matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRichtungsableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Richtungsableitung
Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Sa 06.07.2013
Autor: Kasperkopf

Aufgabe
Bestimmen Sie dort, wo sie existieren, die Richtungsableitungen der folgenden Funktionen:
a) [mm] f:\mathbb{R}^n\to \mathbb{R}, n\ge1 [/mm] mit [mm] f(x_1,...,x_n)=(x_1^2,...,x_n^2)^\alpha, [/mm] wobei [mm] \alpha>0. [/mm]

b) [mm] g:\mathbb{R}^2\to \mathbb{R} [/mm] mit [mm] g(x_1,x_2)=\begin{cases} x_1ln(x_1^2+x_2^2) & (x_1,x_2)\not=(0,0) \\ 0, & x_1=x_2=0 \end{cases} [/mm]

Hallo,

ich bin mir bei der Aufgabe etwas unsicher. Wir hatten bisher nur Richtungsableitungen in einem bestimmten Punkt. Da hier keiner gegeben ist, weiß ich nicht so genau, wie ich hier vorgehen soll.
Kann mir vielleicht jemand helfen?


Danke,
Kasperkopf




Ich habe diese Fragen in keinem anderen Forum gestellt.

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 So 07.07.2013
Autor: Gonozal_IX

Hiho,


> ich bin mir bei der Aufgabe etwas unsicher. Wir hatten
> bisher nur Richtungsableitungen in einem bestimmten Punkt.

Nichts anderes sollst du hier auch machen.
Du hast einen bestimmten, aber beliebigen Punkt [mm] x_0 [/mm] gegeben und sollst die Richtungsableitung bestimmen.
Dabei wirst du darauf stoßen, für welche [mm] x_0 [/mm] der Grenzwert existiert und für welche nicht.

Erstmal: Wie ist die Richtungsableitung denn definiert?
Dann setzt du halt keine fixe Zahl ein, sondern lässt dein [mm] x_0 [/mm] stehen und rechnest so weiter, als wäre dein [mm] x_0 [/mm] ein fester Wert.

MFG,
Gono.

Bezug
        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 So 07.07.2013
Autor: fred97

Ergänzend:

beide Funktionen, f und g, sind auf [mm] \IR^n \setminus \{0\}, [/mm] bzw. [mm] \IR^2 \setminus \{0\} [/mm] differenzierbar.

Also ex. die Richtungsableitungen in jedem Punkt dieser Menge (für jede Richtung).

Es bleiben also "die Nullpunkte" zu untersuchen.

FRED

Bezug
                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:11 So 07.07.2013
Autor: Kasperkopf

Guten Morgen,

erst mal danke, für die Antworten.



> Ergänzend:
>  
> beide Funktionen, f und g, sind auf [mm]\IR^n \setminus \{0\},[/mm]
> bzw. [mm]\IR^2 \setminus \{0\}[/mm] differenzierbar.
>  
> Also ex. die Richtungsableitungen in jedem Punkt dieser
> Menge (für jede Richtung).
>  
> Es bleiben also "die Nullpunkte" zu untersuchen.

Hier muss ich nochmal nachfragen. Ich kann also den Punkt als x=(0,0) festlegen, wenn ich als Begründung deine Ergänzung verwende? Oder habe ich das jetzt falsch verstanden?


>  
> FRED


Grüße Kasperkopf

Bezug
                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:16 So 07.07.2013
Autor: fred97


> Guten Morgen,
>  
> erst mal danke, für die Antworten.
>  
>
>
> > Ergänzend:
>  >  
> > beide Funktionen, f und g, sind auf [mm]\IR^n \setminus \{0\},[/mm]
> > bzw. [mm]\IR^2 \setminus \{0\}[/mm] differenzierbar.
>  >  
> > Also ex. die Richtungsableitungen in jedem Punkt dieser
> > Menge (für jede Richtung).
>  >  
> > Es bleiben also "die Nullpunkte" zu untersuchen.
>  
> Hier muss ich nochmal nachfragen. Ich kann also den Punkt
> als x=(0,0) festlegen, wenn ich als Begründung deine
> Ergänzung verwende?


Ja, bei g.

Bei f ist es (0,0,,,0) [mm] \in \IR^n. [/mm]

FRED



> Oder habe ich das jetzt falsch
> verstanden?
>  
>
> >  

> > FRED
>
>
> Grüße Kasperkopf


Bezug
                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 So 07.07.2013
Autor: Kasperkopf


> Ja, bei g.
>
> Bei f ist es (0,0,,,0) [mm]\in \IR^n.[/mm]
>  
> FRED

Ok, danke.



Ich habe leider immer noch Probleme. Ich habe ja dann die Formel [mm] \bruch{d}{dt}|_{t=0}\ f(x+tv)=\limes_{t\rightarrow 0} \bruch{f(x+tv)-f(x)}{t}=\limes_{t\rightarrow 0} \bruch{f(tv)}{t}. [/mm] Wenn ich dann einsetze, dann erhalte ich doch [mm] \limes_{t\rightarrow 0} \bruch{(tv_1^2+...+tv_n^2)^{\alpha}}{t}, [/mm] oder? Wie genau muss ich dann hier weiter machen? Wir hatten bisher nur Beispiele mit [mm] v_1 [/mm] und [mm] v_2, [/mm] wo dann eine Fallunterscheidung gemacht wurde mit [mm] v_1=0,v_2=1 [/mm] (oder andersrum), [mm] v_1=1=v_2 [/mm] und [mm] v_1\not=0\not=v_2. [/mm] Muss ich hier auch eine Fallunterscheidung machen? Und wie genau würden die Fälle dann hier aussehen, weil das ja bis [mm] v_n [/mm] geht? Oder muss ich jetzt einfach davon den Grenzwert bestimmen?

Bei g bin ich mir schon unsicher, wie die eingesetzte Formel aussieht. [mm] \limes_{t\rightarrow 0} \bruch{tv_1*ln(tv_1^2+tv_2^2)}{t} [/mm] Stimmt das so?

Wäre nett, wenn du mir nochmal helfen würdest.
Danke

Bezug
                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 So 07.07.2013
Autor: fred97

[mm] v_1^2+v_2^2+....+v_n^2=1 [/mm]

FRED

Bezug
                                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 So 07.07.2013
Autor: Kasperkopf


> [mm]v_1^2+v_2^2+....+v_n^2=1[/mm]


Sorry, aber das verstehe ich jetzt nicht so ganz.

Bezug
                                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mo 08.07.2013
Autor: leduart

Hallo
v ist ein Einheitsvektor, oder kann auf jeden fall als solcher gewählt werden.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]