matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationRichtungsableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Richtungsableitung
Richtungsableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Do 19.11.2009
Autor: Marizz

Aufgabe
f(x,y) = [mm] \wurzel{3+x^{2}+2y^{4}} [/mm]

Geben sie einen Vektor an, in dessen Richtung die stärkste Funktionswertänderung an der Stelle (2,1) stattfindet.

Die Richtungsableitung ist:

[mm] f_{x}(x_{0}, y_{0})*r_{1}+f _{y}(x_{0}, y_{0})*r_{2} [/mm]

= [mm] 2/3*r_{1}+4/3*r_{2} [/mm]

wobei [mm] r_{1}=\bruch{v_{1}}{||v||} [/mm] und [mm] r_{2}=\bruch{v_{2}}{||v||} [/mm]

also ich habe mir gedacht, dass die Richtungsableitung gleich null sein müsste, damit die Änderung maximal ist.
Dafür habe ich für v1=1 gesetzt und für v2= -1/2 rausbekommen...


das richtige Ergebnis jedoch sollte [mm] v(\bruch{2}{3},\bruch{4}{3}) [/mm] sein.

habe ich den faschen Rechenweg genommen?

danke

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 Do 19.11.2009
Autor: MatthiasKr

Hi,

> f(x,y) = [mm]\wurzel{3+x^{2}+2y^{4}}[/mm]
>
> Geben sie einen Vektor an, in dessen Richtung die stärkste
> Funktionswertänderung an der Stelle (2,1) stattfindet.
>  Die Richtungsableitung ist:
>  
> [mm]f_{x}(x_{0}, y_{0})*r_{1}+f _{y}(x_{0}, y_{0})*r_{2}[/mm]
>
> = [mm]2/3*r_{1}+4/3*r_{2}[/mm]
>
> wobei [mm]r_{1}=\bruch{v_{1}}{||v||}[/mm] und
> [mm]r_{2}=\bruch{v_{2}}{||v||}[/mm]
>
> also ich habe mir gedacht, dass die Richtungsableitung
> gleich null sein müsste, damit die Änderung maximal ist.

Wie kommst du denn darauf? sie soll maximal sein!

>  Dafür habe ich für v1=1 gesetzt und für v2= -1/2
> rausbekommen...
>  
>

Habt ihr nicht schon in der VL gehabt, dass der gradient die richtung der maximalen aenderung angibt? du musst also eigentlich nur den gradienten der fkt. in dem angegebenen punkt bestimmen...


gruss
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]