matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRichtungsableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Richtungsableitung
Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 So 28.06.2009
Autor: Sachsen-Junge

Hallo liebes Team,

ich soll die Richtungsableitung für die Funktion f(x,y)=sin(x*y) im Punkt P(1,0)
bestimmen mit einer Richtung [mm] v(\frac{1}{2},\frac{1}{2}\wurzel{3}). [/mm]

Mein Ansatz:

[mm] \limes_{t \rightarrow 0} \frac{f((1,0)+t(\frac{1}{2},\frac{1}{2}\wurzel{3}))-f(1,0))}{t} [/mm]
[mm] \gdw [/mm]
[mm] \limes_{t \rightarrow 0} \frac{sin(t*\frac{\wurzel{3}}{2}+t^2*\frac{\wurzel{3}}{4})}{t} [/mm]

Könnte mir einer vielleicht einen Tipp geben, wie ich weiter rechnen soll??

Es sollte [mm] \frac{\wurzel{3}}{2} [/mm] raus kommen...

Vielen Dank

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 28.06.2009
Autor: M.Rex

Hallo

Bei $ [mm] \limes_{t \rightarrow 0} \frac{sin(t\cdot{}\frac{\wurzel{3}}{2}+t^2\cdot{}\frac{\wurzel{3}}{4})}{t} [/mm] $

hast du ja einen Ausdruck der Form [mm] "\bruch{0}{0}", [/mm]
also kannst du hier dich mal mit den MBLHospitalscheRegeln arbeiten.

Marius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]