Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:43 Sa 25.10.2008 | Autor: | Gopal |
Aufgabe 1 | Bestimmen Sie die Richtungsableitung der Funktion [mm] f(x,y,z)=x^3+e^y [/mm] sin z im Punkt [mm] (x_0,y_0,z_0)=(1,ln3,\bruch{\pi}{3}) [/mm] und in Richtung des Vektors [mm] \overrightarrow v=(\bruch{3}{7},-\bruch{2}{7},\bruch{6}{7}). [/mm] |
Aufgabe 2 | Bestimmen Sie für die Funktion [mm] f(x,y)=ye^{-x}+2x [/mm] die Richtung des stärksten Abfalls vom Punkt [mm] (x_0,y_0)=(2,1) [/mm] aus (Begründung). |
Hallo,
kann mir jemand sagen, ob das so richtig ist?
Ich habe die obigen Aufgaben wie folgt bearbeitet:
1.
Gradient:
[mm] \nabla f(x,y,z)=\vektor{2x^2\\sinz e^y\\e^ycosz}
[/mm]
Richtungsableitung:
[mm] \bruch{\partial f}{\partial v}(x,y,z)=\nabla f(x,y,z)\overrightarrow v^t=(2x^2,sinz e^y,e^ycosz)\vektor{\bruch{3}{7}\\-\bruch{2}{7}\\\bruch{6}{7}}=\bruch{1}{7}(6x^2-2sinz e^y+6e^ycosz)
[/mm]
Richtungsableitung in [mm] (x_0,y_0,z_0)
[/mm]
[mm] \bruch{\partial f}{\partial v}(x_0,y_0,z_0)=\bruch{1}{7}(6-2sin\bruch{\pi}{3} e^{ln3}+6e^{ln3}cos\bruch{\pi}{3})=\bruch{1}{7}(6-3\wurzel3+9)=\bruch{15-3\wurzel3}{7}
[/mm]
2.
Gradient
[mm] \nabla f(x,y)=\vektor{-ye^{-x}+2\\e^{-x}}
[/mm]
[mm] \nabla f(x_0,y_0)=\nabla f(2,1)=\vektor{-\bruch{1}{e^2}+2\\\bruch{1}{e^2}} [/mm] hat die Richtung des steilsten Anstiegs von f in [mm] (x_0,y_0), [/mm] denn für alle anderen Richtungen [mm] \overrightarrow{v} [/mm] würde gelten
[mm] \phi\not=0, \phi [/mm] Winkel zwischen [mm] \nabla [/mm] f und [mm] \overrightarrow{v} [/mm]
und somit
[mm] \bruch{\partial f}{\partial v}=\nabla f^t \overrightarrow{v}=|\nabla [/mm] f|cos [mm] \phi \le |\nabla [/mm] f|
Da f in [mm] (x_0,y_0) [/mm] stetig ist, hat dann [mm] -\nabla f(x_0,y_0) =-\vektor{-\bruch{1}{e^2}+2\\\bruch{1}{e^2}} [/mm] die Richtung des stärksten Abfalls.
Die Richtung als solche ergibt sich dann durch Normierung:
[mm] \bruch{-\nabla f(x_0,y_0)}{|-\nabla f(x_0,y_0)|}=- \bruch{1}{\wurzel{(-e^{-2}+2)^2+(e^{-2})^2}}\vektor{-\bruch{1}{e^2}+2\\\bruch{1}{e^2}} [/mm]
passt das so?
Gruß
Gopal
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:07 So 26.10.2008 | Autor: | leduart |
Hallo
sieht alles gut aus, ausser die Ableitung von [mm] x^3 [/mm] ist 3 [mm] x^2 [/mm] nicht [mm] 2x^2, [/mm] entsprechend musst du in 1) korrigieren.
die numerischen Rechng. hab ich nicht ueberprueft.
Gruss leduart
|
|
|
|