matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRichtungsableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Richtungsableitung
Richtungsableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Richtungsableitung: korrektur Tipp
Status: (Frage) beantwortet Status 
Datum: 12:34 Mi 18.03.2015
Autor: LGS

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei $f:\IR^2 -> \IR $ gegeben durch

$f(x,y):= \begin{cases} xy\cdot{}\frac{x^2-y^2}{x^2+y^2}, & \mbox{für } (x,y) \neq (0,0) \\ 0 & \mbox{für } (x,y)=(0,0) } \end{cases}$

Bestimmen sie alle  Richtungsableitungen $D_{v}f(0,0), v\in \IR^2$ ohne $(0,0)$. Ist $f$ stetig? ist $f$ differenzierbar? Begründe


also erstmal $D_{v}f(0,0)= \limes_{h\rightarrow0} \frac{(\vektor{0 \\ 0}+h\cdot{}v) - f(0,0)}{h}=  \limes_{h\rightarrow0} \frac{h\cdot{}v)}{h}= =  \limes_{h\rightarrow0} v = v$

stetig:

außer in $ (0,0)$ stetig , da die funktion ein kompositum von funktionen ist.

Fall $ (0,0)$

$ |f(x,y)-f(0,0)| = |xy\cdot{}\frac{x^2-y^2}{x^2+y^2}| \le | xy\cdot{}\frac{x^2-y^2}{2x^2}|= |\frac{y\cdot{}(x^2-y^2)}{x}| $


jetzt $\limes_{x,y\rightarrow0} |\frac{y\cdot{}(x^2-y^2)}{x}| = 0$ also ist es stetig


wie mach ich jetzt diff'barkeit?

        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mi 18.03.2015
Autor: fred97


> Sei [mm]f:\IR^2 -> \IR[/mm] gegeben durch
>  
> [mm]f(x,y):= \begin{cases} xy\cdot{}\frac{x^2-y^2}{x^2+y^2}, & \mbox{für } (x,y) \neq (0,0) \\ 0 & \mbox{für } (x,y)=(0,0) } \end{cases}[/mm]
>  
> Bestimmen sie alle  Richtungsableitungen [mm]D_{v}f(0,0), v\in \IR^2[/mm]
> ohne [mm](0,0)[/mm]. Ist [mm]f[/mm] stetig? ist [mm]f[/mm] differenzierbar? Begründe
>  also erstmal [mm]D_{v}f(0,0)= \limes_{h\rightarrow0} \frac{(\vektor{0 \\ 0}+h\cdot{}v) - f(0,0)}{h}= \limes_{h\rightarrow0} \frac{h\cdot{}v)}{h}= = \limes_{h\rightarrow0} v = v[/mm]

Das ist völliger Murks ! Sei [mm] v=(v_1,v_2) [/mm]

Dann ist [mm] D_{v}f(0,0)= \limes_{h\rightarrow0}\frac{f(hv_1,hv_2)}{h} [/mm]

Berechne diesen Grenzwert



>  
> stetig:
>  
> außer in [mm](0,0)[/mm] stetig , da die funktion ein kompositum von
> funktionen ist.
>  
> Fall [mm](0,0)[/mm]
>
> [mm]|f(x,y)-f(0,0)| = |xy\cdot{}\frac{x^2-y^2}{x^2+y^2}| \le | xy\cdot{}\frac{x^2-y^2}{2x^2}|= |\frac{y\cdot{}(x^2-y^2)}{x}|[/mm]
>

Wie kommst Du auf das  " [mm] \le [/mm] " ??


>
> jetzt [mm]\limes_{x,y\rightarrow0} |\frac{y\cdot{}(x^2-y^2)}{x}| = 0[/mm]

Wieso ?


Du bist ja ein Witzbold ! Warum schreibst Du nicht gleich [mm] \limes_{x,y\rightarrow0}f(x,y)=0 [/mm] ??


Nee, so einfach lässt Dir das niemand durchgehen.


> also ist es stetig
>  
>
> wie mach ich jetzt diff'barkeit?

Darum kümmern wir uns später.

FRED


Bezug
                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Mi 18.03.2015
Autor: LGS

$ [mm] D_{v}f(0,0)= \limes_{h\rightarrow0}\frac{f(hv_1,hv_2)}{h}= \limes_{h\rightarrow0} \frac{hv_1*hv_2\cdot{}\frac{(hv_1)^2-(hv_2)^2}{(hv_1)^2+(hv_2)^2}}{h} \le \frac{hv_1*hv_2\cdot{}\frac{(hv_1)^2-(hv_2)^2}{2(hv_1)^2}}{h} \le \frac{(hv_1)^2\cdot{}\frac{(hv_1)^2-(hv_2)^2}{2(hv_1)^2}}{h} [/mm] =  [mm] \frac{\frac{(hv_1)^2-(hv_2)^2}{(hv_1)^2}}{h} \le \frac{1}{h} \to [/mm] 0 ( h [mm] \to [/mm] 0)   $

kann man das so machen?


neuer versuch stetigkeit

$ |f(x,y)-f(0,0)| = [mm] |xy\cdot{}\frac{x^2-y^2}{x^2+y^2}| \le [/mm] | [mm] x^2\cdot{}\frac{x^2-y^2}{2x^2}|= |\frac{(x^2-y^2)}{x^2}| [/mm] $

jetzt komm ich nciht weiter :/

Bezug
                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Mi 18.03.2015
Autor: leduart

Hallo
setze x=r*cos(t), y=r*sin(t) und zeige dass für r gegen0 lim=0 unabhängig von t.

aber warum du <= schreibst, wenn du y durch x ersetzt ist  mir nicht klar.
Gruß ledum

Bezug
                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Mi 18.03.2015
Autor: fred97


> [mm]D_{v}f(0,0)= \limes_{h\rightarrow0}\frac{f(hv_1,hv_2)}{h}= \limes_{h\rightarrow0} \frac{hv_1*hv_2\cdot{}\frac{(hv_1)^2-(hv_2)^2}{(hv_1)^2+(hv_2)^2}}{h} \le \frac{hv_1*hv_2\cdot{}\frac{(hv_1)^2-(hv_2)^2}{2(hv_1)^2}}{h} \le \frac{(hv_1)^2\cdot{}\frac{(hv_1)^2-(hv_2)^2}{2(hv_1)^2}}{h} = \frac{\frac{(hv_1)^2-(hv_2)^2}{(hv_1)^2}}{h} \le \frac{1}{h} \to 0 ( h \to 0) [/mm]

Jedes  [mm] "\le [/mm] " da oben ist völlig aus der Luft gegriffen, absolut abenteuerlich. Wie kommst Du denn auf sowas ?

Dann steht da [mm] \frac{1}{h} \to [/mm] 0 ( h [mm] \to [/mm] 0) ! Oha ! Siehst Du nicht, dass das blanker Unsinn ist ?

>  
> kann man das so machen?

Nein, nee , nö, nie und nimmer !

In  [mm] \frac{hv_1*hv_2\cdot{}\frac{(hv_1)^2-(hv_2)^2}{(hv_1)^2+(hv_2)^2}}{h} [/mm]  kannst Du doch die h's kürzen was das Zeug hält. Mach das mal.


>  
>
> neuer versuch stetigkeit
>  
> [mm]|f(x,y)-f(0,0)| = |xy\cdot{}\frac{x^2-y^2}{x^2+y^2}| \le | x^2\cdot{}\frac{x^2-y^2}{2x^2}|= |\frac{(x^2-y^2)}{x^2}|[/mm]
>  
> jetzt komm ich nciht weiter :/

Dazu hat leduart schon was gesagt.

FRED


Bezug
                                
Bezug
Richtungsableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Mi 18.03.2015
Autor: LGS

$ [mm] \frac{hv_1\cdot{}hv_2\cdot{}\frac{(hv_1)^2-(hv_2)^2}{(hv_1)^2+(hv_2)^2}}{h} =v_1\cdot{}hv_2\cdot{}\frac{(v_1)^2-(v_2)^2}{(v_1)^2+(v_2)^2} [/mm]   $ so gut?

Bezug
                                        
Bezug
Richtungsableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:33 Do 19.03.2015
Autor: fred97


>
> [mm]\frac{hv_1\cdot{}hv_2\cdot{}\frac{(hv_1)^2-(hv_2)^2}{(hv_1)^2+(hv_2)^2}}{h} =v_1\cdot{}hv_2\cdot{}\frac{(v_1)^2-(v_2)^2}{(v_1)^2+(v_2)^2} [/mm]
> so gut?


Ja.

Weiter ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]