Reziprozitätsgesetz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien [mm] $r,s,1_1,...,r_m \in \IZ$ [/mm] ungerade. Dann gelten folgende Kongruenzen $mod 2$:
1) [mm] $\bruch{rs - 1}{2} \equiv \bruch{r-1}{2} [/mm] + [mm] \bruch{s-1}{2}$ [/mm] bzw. [mm] $\bruch{r_1 \cdot r_2 \cdot ... \cdot r_m - 1}{2}$ \equiv \summe_{i=1}^{m} \bruch{r_i - 1}{2}
[/mm]
2) [mm] $\bruch{r^2s^2 - 1}{8} \equiv \bruch{r^2-1}{8} [/mm] + [mm] \bruch{s^2-1}{8}$ [/mm] bzw. [mm] $\bruch{r_1^2 \cdot r_2^2 \cdot ... \cdot r_m^2 - 1}{8}$ \equiv \summe_{i=1}^{m} \bruch{r_i^2 - 1}{8} [/mm] |
Hallo zusammen,
ich habe in einem Buch den Beweis für das Reziprozitätsgesetz für Jacobi-Symbole nachgeschlagen und dort wird mit den obigen Hilfssätzen gearbeitet. Das diese zur Lösung des Beweises helfen ist mir schon einsichtig, allerdings verstehe ich den im Buch angegebene Beweis für diese Hilfssätze nicht:
1) folgt aus: $(r-1)(s-1) [mm] \equiv [/mm] 0 \ mod \ 4 [mm] \Rightarrow [/mm] rs-1 [mm] \equiv [/mm] (r-1) + (s-1) \ mod \ 4$
2) folgt aus: [mm] $r^2 [/mm] -1 [mm] \equiv s^2-1 \equiv [/mm] 0 \ mod \ 4 [mm] \Rightarrow (r^2 [/mm] - [mm] 1)(s^2 [/mm] - 1) [mm] \equiv [/mm] 0 \ mod \ 16 [mm] \Rightarrow r^2s^2 [/mm] - 1 [mm] \equiv (r^2 [/mm] - 1) + [mm] (s^2 [/mm] - 1) \ mod \ 16$
Kann mir jemand vllt mit einem Ansatz oder so helfen? Ich versteh leider wirklich nicht, wie es zu dem obigen Beweis kommt... *schäm*
LG und schonmal vielen Dank
fagottator
|
|
|
|
moin,
Der Beweis ist etwas sehr kurz geraten, ja.
Du kannst das aber sicher ohne größere Probleme selbst kurz beweisen (ist auch gut zum Behalten und fürs Verständnis^^).
Für die Brüche mit $r,s$ solltest du dir $s$ und $r$ jeweils modulo $4$ angucken und dann überprüfen, was modulo 2 mit den Brüchen geschieht.
Da beide ungerade sind gibt es nur je zwei Möglichkeiten, also insgesamt vier Fälle abzuarbeiten.
Für die Summen würde sich eine kleine Induktion nach $m$ anbieten, wobei der Induktionsanfang gerade die erste Gleichung mit $r,s$ ist.
lg
Schadow
|
|
|
|