matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenRestklassen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Restklassen
Restklassen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklassen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:17 Mo 25.11.2013
Autor: Goetze

Aufgabe
Finde einen Monomorphismus f: [mm] \frac{\mathbb{Z}}{13\mathbb{Z}}\to \frac{\mathbb{Z}}{169\mathbb{Z}} [/mm]

Hi,

Also mein Idee war folgende: Da ja [mm] \frac{\mathbb{Z}}{13\mathbb{Z}}=\{0,1,2,...,12\} [/mm] und [mm] \frac{\mathbb{Z}}{169\mathbb{Z}}=\{0,1,2,...,168\}, [/mm] wäre doch eine injektive Abbildung einfach x [mm] \mapsto [/mm] x , oder ?


Bin mir nicht sicher, da ja Die Restklassen 0,1,...,12 wiederrum Elemente bzw. Repräsentaten haben und ich nicht weiss , ob ich eine injektive Funktion finden muss, welche Resklassen in Restklassen abbildet, oder Elemente von Restklassen in Elemente von Restklassen...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Vielen Dank für jede Hilfe,

LG


        
Bezug
Restklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:49 Di 26.11.2013
Autor: angela.h.b.


> Finde einen Monomorphismus f:
> [mm]\frac{\mathbb{Z}}{13\mathbb{Z}}\to \frac{\mathbb{Z}}{169\mathbb{Z}}[/mm]

>

> Hi,

>

> Also mein Idee war folgende: Da ja
> [mm]\frac{\mathbb{Z}}{13\mathbb{Z}}=\{0,1,2,...,12\}[/mm] und
> [mm]\frac{\mathbb{Z}}{169\mathbb{Z}}=\{0,1,2,...,168\},[/mm] wäre
> doch eine injektive Abbildung einfach x [mm]\mapsto[/mm] x , oder ?

>

Hallo,

[willkommenmr].

Ja, das wäre eine injektive Abbildung.

Aber einen Monomorphismus hast Du damit nicht.
Ein Monomorphismus ist ein injektiver Homomorphismus, und nun wäre es sicher gut, wenn Du Dich informieren würdest, welche Eigenschaften ein Homomorphismus hat.

Anhand dessen prüfe dann mal Deine Abbildung - und überlege neu.

>

> Bin mir nicht sicher, da ja Die Restklassen 0,1,...,12
> wiederrum Elemente bzw. Repräsentaten haben und ich nicht
> weiss , ob ich eine injektive Funktion finden muss, welche
> Resklassen in Restklassen abbildet, oder Elemente von
> Restklassen in Elemente von Restklassen...

Restklassen mod. 13 auf Restklassen modulo 169.

LG Angela
>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>
>

> Vielen Dank für jede Hilfe,

>

> LG

>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]