matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisRestklasse, anord.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Restklasse, anord.
Restklasse, anord. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Restklasse, anord.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:44 Di 07.11.2006
Autor: roadrunnerms

hallo.
ich hab ein problem mit folgender aufgabe:
Zeigen Sie, dass die Restklassenkörper Zp := Z/pZ, p Primzahl, sich nicht anordnen lassen.    

also ich habe mir überlegt, entweder zeige ich, dass Zp eine endliche Menge ist. weiß jedoch nicht ob es eine ist, und falls ja, wie ich des beweisen soll.
dazu mal eine frage, was heißt denn Z/pZ genau, welchen zahlen sind da jetzt gemeint??

oder ich versuche die 3 axiome anzuwenden:
Symmetrei bzgl multiplikation, addition; trichotomie
aber des klappt bei mir net wirklich, komme da zu keinem ergebnis


auf dem blatt ist noch eine Anleitung gegeben: Zeigen Sie, dass eine Teilmenge M [mm] \subset [/mm] Zp für welche die Anordnungsaxiome
bezüglich 0 < x :, x 2 M gelten, leer ist.

also schonmal danke für die hilfe

        
Bezug
Restklasse, anord.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Di 07.11.2006
Autor: roadrunnerms

also ich weiß jetzt was es mit der restklasse auf sich hat.
sie besitz p elemente also von 0 bis (p-1)
diese restklasse ist ja somit endlich, wie kann man denn sowas beweisen??

Bezug
        
Bezug
Restklasse, anord.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 09.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]