matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenResonanzfrequenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - Resonanzfrequenz
Resonanzfrequenz < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Resonanzfrequenz: Tipp; Idee
Status: (Frage) beantwortet Status 
Datum: 17:26 Do 04.04.2013
Autor: fmath

Hallo,

Ich beschäftige mich momentan mit Schwingungen, für den Speziellfall der gedämpfte erzwungene Oszillator.

m*x''(t)  + d*x'(t) + k*x(t)  = A*cos(w*t)       (1)

Ich verstehe leider nicht wie man zu der Resonanzkreisfrequenz kommt.

Ich habe es geschaft die Eigenkreisfrequenz [mm] w_{0} [/mm] und die Dämpfungskonstante bzw. Dämpfungsmass [mm] \delta [/mm] zu bestimmen, aber die Resonanzkreisfrequenz  

[mm] w_{r} [/mm] = [mm] \wurzel{w_{0}^{2} - \delta^{2}} [/mm]         (2)

bleibt bei mir eine Rätsel.

Ich beziehe mich auf folgende Links:

http://de.wikibooks.org/wiki/Schwingbewegungen


Hätte da vielleicht jemand von euch eine Idee, die mir dabei helfen könnte.
Danke euch.





        
Bezug
Resonanzfrequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Do 04.04.2013
Autor: MathePower

Hallo fmath,

> Hallo,
>  
> Ich beschäftige mich momentan mit Schwingungen, für den
> Speziellfall der gedämpfte erzwungene Oszillator.
>  
> m*x''(t)  + d*x'(t) + k*x(t)  = A*cos(w*t)       (1)
>  
> Ich verstehe leider nicht wie man zu der
> Resonanzkreisfrequenz kommt.
>  
> Ich habe es geschaft die Eigenkreisfrequenz [mm]w_{0}[/mm] und die
> Dämpfungskonstante bzw. Dämpfungsmass [mm]\delta[/mm] zu
> bestimmen, aber die Resonanzkreisfrequenz  
>
> [mm]w_{r}[/mm] = [mm]\wurzel{w_{0}^{2} - \delta^{2}}[/mm]         (2)
>  
> bleibt bei mir eine Rätsel.
>  
> Ich beziehe mich auf folgende Links:
>  
> http://de.wikibooks.org/wiki/Schwingbewegungen
>  
>
> Hätte da vielleicht jemand von euch eine Idee, die mir
> dabei helfen könnte.
>  Danke euch.
>  


Löse das charakteristische Polynim obiger DGL.

Das charkteristische Polynom hat komplexe Lösungen.

Dabei stellt der Imaginärteil die Resonanzkreisfrequenz dar.


Gruss
MathePower

Bezug
                
Bezug
Resonanzfrequenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Do 04.04.2013
Autor: fmath

Hallo MathePower,

Hier mein Ansatz:

m*x''(t)  + d*x'(t) + k*x(t)  = 0;

  ---> x''(t)  + [mm] \bruch{d}{m}*x'(t) [/mm] + [mm] \bruch{k}{m}*x(t) [/mm]  = 0

  ---> x''(t)  + [mm] 2*\delta*x'(t) [/mm] + [mm] w_{0}^{2}*x(t) [/mm] = 0

Und

  [mm] \Delta [/mm] = [mm] (2*\delta)^{2} -4(1*w_{0}^{2}) [/mm]  = [mm] 4*(\delta)^{2} [/mm] - [mm] 4*w_{0}^{2} [/mm]    = [mm] 4(\delta^{2} [/mm] - [mm] w_{0}^{2}) [/mm]

Ich bekomme irgendwie hier schon kein Imaginärteil; was mache ich denn
falsch ?

Danke für deine Mühe
fmath

Bezug
                        
Bezug
Resonanzfrequenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Do 04.04.2013
Autor: MathePower

Hallo fmath,


> Hallo MathePower,
>  
> Hier mein Ansatz:
>
> m*x''(t)  + d*x'(t) + k*x(t)  = 0;
>  
> ---> x''(t)  + [mm]\bruch{d}{m}*x'(t)[/mm] + [mm]\bruch{k}{m}*x(t)[/mm]  = 0
>  
> ---> x''(t)  + [mm]2*\delta*x'(t)[/mm] + [mm]w_{0}^{2}*x(t)[/mm] = 0
>  
> Und
>  
> [mm]\Delta[/mm] = [mm](2*\delta)^{2} -4(1*w_{0}^{2})[/mm]  = [mm]4*(\delta)^{2}[/mm] -
> [mm]4*w_{0}^{2}[/mm]    = [mm]4(\delta^{2}[/mm] - [mm]w_{0}^{2})[/mm]
>  
> Ich bekomme irgendwie hier schon kein Imaginärteil; was
> mache ich denn
>   falsch ?
>


Die Diskriminante [mm]\Delta[/mm] muß kleiner Null sein,
damit Du eine  gedämpfte Schwingung erhältst.


> Danke für deine Mühe
>  fmath


Gruss
MathePower

Bezug
                                
Bezug
Resonanzfrequenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Do 18.04.2013
Autor: fmath

danke, habe verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]