matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesResonanzfall DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Resonanzfall DGL
Resonanzfall DGL < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Resonanzfall DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 Mo 10.02.2014
Autor: haner

Aufgabe
[mm] y```+2y``-3y`=1+e^x [/mm]

Hallo,
wenn ich das charakteristische Polynom bestimme bekomme ich die Nullstellen
lamda1=0
lamda2=1
lamda3=-3
und erhalte folgendes Fundamentalsystem:
y1(x)=1
[mm] y2(x)=e^x [/mm]
y3(x)=e^(-3x)
Nun möchte ich die partikuläre Lösung mit dem Ansatz vom Typ der rechten Seite bestimmen.
[mm] b(x)=1+e^x [/mm]

Mein Problem:
Nun schaue ich normalerweise in meiner Tabelle nach, welches lamda für die rechte Seite gilt und schaue ob diese lamda eine Nullstelle meines charakteristischen Polynoms ist.
[mm] 1+e^x [/mm] gibt es aber in meiner Tabelle nicht.
Wie kann ich es jetzt machen?

MfG haner

        
Bezug
Resonanzfall DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Mo 10.02.2014
Autor: MathePower

Hallo haner,

> [mm]y'''+2y''-3y'=1+e^x[/mm]
>  Hallo,
>  wenn ich das charakteristische Polynom bestimme bekomme
> ich die Nullstellen
> lamda1=0
>  lamda2=1
>  lamda3=-3
>  und erhalte folgendes Fundamentalsystem:
>  y1(x)=1
>  [mm]y2(x)=e^x[/mm]
>  y3(x)=e^(-3x)
>  Nun möchte ich die partikuläre Lösung mit dem Ansatz
> vom Typ der rechten Seite bestimmen.
>  [mm]b(x)=1+e^x[/mm]
>  
> Mein Problem:
>  Nun schaue ich normalerweise in meiner Tabelle nach,
> welches lamda für die rechte Seite gilt und schaue ob
> diese lamda eine Nullstelle meines charakteristischen
> Polynoms ist.
>  [mm]1+e^x[/mm] gibt es aber in meiner Tabelle nicht.
>  Wie kann ich es jetzt machen?
>  


Bestimmt aber "1" und [mm]e^{x}[/mm]

Sofern diese keine Lösungen der homogenen DGL sind,
ist der Ansatz einr Linearkombination der Einzelansätze.

Sind dies aber Lösungen der homogenen DGL. Hier ist es
zufällig die gesamte Störfunktion, so sind die Einzelansätze
mit "x" zu multiplizieren.


> MfG haner


Gruss
MathePower

Bezug
                
Bezug
Resonanzfall DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Mo 10.02.2014
Autor: haner

Hallo,

ja, hier kommt 1 und auch [mm] e^x [/mm] in der homogenen DGL vor.
Deswegen hätte ich eigentlich gesagt, ich habe einen zweifache  Resonanzfall und muss meinen Ansatz mit [mm] x^2 [/mm] multiplizieren.

In der Musterlösung wird aber nur mit x multipliziert.
Warum?

MfG haner

Bezug
                        
Bezug
Resonanzfall DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mo 10.02.2014
Autor: MathePower

Hallo haner,


> Hallo,
>  
> ja, hier kommt 1 und auch [mm]e^x[/mm] in der homogenen DGL vor.
>  Deswegen hätte ich eigentlich gesagt, ich habe einen
> zweifache  Resonanzfall und muss meinen Ansatz mit [mm]x^2[/mm]
> multiplizieren.
>  
> In der Musterlösung wird aber nur mit x multipliziert.
>  Warum?
>  


Weil das charakteristische Polynom der DGL
0 und 1 als einfache Nullstellen besitzt.


> MfG haner


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]