matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenReparametrisieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Reparametrisieren
Reparametrisieren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reparametrisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 22.11.2010
Autor: Kuriger

Hallo

Kann mich jemand über den SInn und zweck einer Reparametrisieren der Bogenlänge aufklären?

Ich habe eine ortskurve


r(t) = [mm] \vektor{cos(t) \\ sin(t) \\ t} [/mm] 0 [mm] \le [/mm] t [mm] \le 2\pi [/mm]

v(t) = [mm] \vektor{-sin(t) \\ cos(t) \\ 1} [/mm]
|v(t)| = [mm] \wurzel{2} [/mm]

s (t) = [mm] \integral_{0}^{t}{2 dt} [/mm] = [mm] \wurzel{2} [/mm] t
s (t) = [mm] \integral_{0}^{2\pi}{2 dt} [/mm] = [mm] \wurzel{2} [/mm] t
t(s) = [mm] \bruch{s}{\wurzel{2}} [/mm]

Nun lautet die Reparametrisieren  Funktion oder wie man das nennen mag:
r(t(s)) = [mm] \vektor{cos(\bruch{s}{\wurzel{2}}) \\ sin(\bruch{s}{\wurzel{2}}) \\ \bruch{s}{\wurzel{2}}} [/mm] 0 [mm] \le [/mm] t [mm] \le 2\pi [/mm]

Was soll das eigentlich? Mir ist wie egsagt der Sinn und Zweck dieser Umformung nicht klar...

Danke, gruss Kuriger

        
Bezug
Reparametrisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 Mo 22.11.2010
Autor: ChopSuey

Hallo,

vielleicht erklärst du mal, was du eigentlich genau wissen willst?
Redest du vom Umparametrisieren? Wenn ja, was sollen dann die Gleichungen?

Aber hey, warum unnötig viel Arbeit machen? Die Helfenden lassen sich schon irgendwas passendes einfallen.

ChopSuey

Bezug
        
Bezug
Reparametrisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:48 Mo 22.11.2010
Autor: Tyskie84

Hallo Kuriger,



[]Klick

[hut] Gruß

Bezug
                
Bezug
Reparametrisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 Mo 22.11.2010
Autor: Kuriger

Hallo

Wills tmich noch ganz zum Clown machen? Was soll ich damit? Ja ich soll mir mal schauen was eine Bogenlänge ist...obwohl das nicht meien Frage war.

Bezug
                        
Bezug
Reparametrisieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Mo 22.11.2010
Autor: Tyskie84

Hallo,

nein zb auf eine Seite klicken ich glaub das war die 2 von oben oder so und dann runterscrollen und lesen.

[hut] Gruß

Bezug
        
Bezug
Reparametrisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Di 23.11.2010
Autor: fred97


> Hallo
>  
> Kann mich jemand über den SInn und zweck einer
> Reparametrisieren der Bogenlänge aufklären?
>  
> Ich habe eine ortskurve
>  
>
> r(t) = [mm]\vektor{cos(t) \\ sin(t) \\ t}[/mm] 0 [mm]\le[/mm] t [mm]\le 2\pi[/mm]
>  
> v(t) = [mm]\vektor{-sin(t) \\ cos(t) \\ 1}[/mm]
> |v(t)| = [mm]\wurzel{2}[/mm]
>  
> s (t) = [mm]\integral_{0}^{t}{2 dt}[/mm] = [mm]\wurzel{2}[/mm] t
>  s (t) = [mm]\integral_{0}^{2\pi}{2 dt}[/mm] = [mm]\wurzel{2}[/mm] t
>  t(s) = [mm]\bruch{s}{\wurzel{2}}[/mm]
>  
> Nun lautet die Reparametrisieren  Funktion oder wie man das
> nennen mag:
>  r(t(s)) = [mm]\vektor{cos(\bruch{s}{\wurzel{2}}) \\ sin(\bruch{s}{\wurzel{2}}) \\ \bruch{s}{\wurzel{2}}}[/mm]
> 0 [mm]\le[/mm] t [mm]\le 2\pi[/mm]
>  
> Was soll das eigentlich? Mir ist wie egsagt der Sinn und
> Zweck dieser Umformung nicht klar...

In

           H. Heuser, Lehrbuch der Analysis (Teil 2) , § 178 , bekommst Du eine Antwort.

FRED


>  
> Danke, gruss Kuriger


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]