matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikRelativer Fehler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - Relativer Fehler
Relativer Fehler < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relativer Fehler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 Mo 25.01.2010
Autor: rainman_do

Aufgabe
[Dateianhang nicht öffentlich]
Der Winkel [mm] \alpha [/mm] wird durch Bestimmung von $a=1.25 [mm] \pm [/mm] 0.01$ und $b=0.93 [mm] \pm [/mm] 0.01$ gemessen.
Schätzen Sie den relativen Fehler von [mm] \alpha [/mm] im Bogenmaß, der sich aus den Messfehlern von $a$ und $b$ ergeben kann.

Hallo, ich bräuchte mal ganz dringend eure Hilfe bei der Klausurvorbereitung. Ich hab zwar die Lösung für diese Aufgabe, verstehe aber eine Sache nicht:

[mm] $\alpha=f(a,b)=\arctan(\bruch{b}{a}), [/mm]  x=(a,b)$

[mm] $\left| \bruch{f(\tilde x)-f(x)}{f(x)} \right| \le \max_{j=1,2} \left|k_{1,j} \right| \cdot ||\delta_x||_1$ [/mm]

[mm] $\delta_x [/mm] = [mm] \left( \bruch{\Delta a}{a}, \bruch{\Delta b}{b} \right)$ [/mm]

[mm] $k_{1,j}=\bruch{\partial f(x)}{\partial x_j}\cdot \bruch{x_j}{f(x)}$ [/mm]
...
[mm] $k_{11}=\bruch{-ba}{(a^2+b^2)\cdot \arctan(\bruch{b}{a})}$ [/mm]

[mm] $k_{12}=\bruch{ab}{(a^2+b^2)\cdot \arctan(\bruch{b}{a})}$ [/mm]

Nun habe ich das Problem, dass ich nicht weiß was ich für $a$ und $b$ einsetzen muss....wenn ich für $a$ bspw. $1.25$ einsetze und für $b$  $0.93$ kommt was anderes raus, als in der Musterlösung....

laut Musterlösung ist [mm] $|k_{11}|=|k_{12}|\approx [/mm] 0,7487$

Vielen Dank schon mal im Voraus

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Relativer Fehler: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Mo 25.01.2010
Autor: ullim

Hi,

ich hab mal nachgerechnet, bei Dir ist alles richtig und wenn Du die Werte für a=1.25 und b=0.93 einsetzt kommen genau die Werte der Musterlösung heraus.

mfg ullim

Bezug
                
Bezug
Relativer Fehler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Mo 25.01.2010
Autor: rainman_do

mh...sehr peinlich...ich hab die ganze zeit mit arccos anstatt arctan gerechnet :-)

vielen dank für die antwort

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]