Relationen: Inverse&Komplement < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:34 Mo 14.01.2008 | Autor: | Quadral |
Aufgabe | Gilt immer
[mm] $(R')^{1} [/mm] = [mm] (R^{1})'$
[/mm]
? |
Hallo Leute,
ich bin mir nicht sicher, ob diese Frage hierher gehört, und wahrscheinlich ist es auch eine blöde Frage, aber ist die Inverse des Komplements einer Relation immer auch das Komplement der Inverse dieser Relation?
Danke,
QUadrAL
|
|
|
|
> Gilt immer
>
> [mm](R')^{1} = (R^{1})'[/mm]
>
> ?
> Hallo Leute,
>
> ich bin mir nicht sicher, ob diese Frage hierher gehört,
> und wahrscheinlich ist es auch eine blöde Frage, aber ist
> die Inverse des Komplements einer Relation immer auch das
> Komplement der Inverse dieser Relation?
Ich denke ja. Zunächst eine anschauliche Überlegung: Eine zweistellige Relation wie $R$ kann man sich als Punktmenge in der Ebene [mm] $\IR^2$ [/mm] vorstellen. Das Komplement $R'$ bestände dann aus allen Punkten der Ebene, die nicht zur Figur $R$ gehören ("Hintergrund"). Beim Übergang zur Inversen [mm] $R^{-1}$ [/mm] wird $R$ an der $x=y$ Achse gespiegelt ($x$ und $y$ Koordinate der Punkte von $R$ werden vertauscht). Die Behauptung gilt genau dann, wenn stets der Hintergrund [mm] $(R^{-1})'$ [/mm] der an $x=y$ gespiegelten Relation $R$ die an $x=y$ gespiegelte Punktmenge $R'$, also [mm] $(R')^{-1}$, [/mm] ist.
Anschaulich leuchtet (mir) dies ein - nun müsste man es noch formal zeigen. Vielleicht so: es ist einerseits [mm] $R'=\{(x,y)\mid (x,y)\notin R\}$ [/mm] und daher [mm] $(R')^{-1}=\{(y,x)\mid (x,y)\in R'\mid\}=\{(y,x)\mid (x,y)\notin R\}$.
[/mm]
Andererseits ist [mm] $R^{-1}=\{(y,x)\mid (x,y)\in R\}$ [/mm] und daher [mm] $(R^{-1})'=\{(x,y)\mid (x,y)\notin R^{-1}\}=\{(x,y)\mid (y,x)\notin R\}$.
[/mm]
Damit haben wir gezeigt:
[mm](R')^{-1}=\{(y,x)\mid (x,y)\notin R\}\red{=}\{(x,y)\mid (y,x)\notin R\}=(R^{-1})'[/mm]
Das rot markierte Gleichheitzeichen gilt, weil die beiden Mengen linnks und rechts davon durch blosses Vertauschen ("Umbenennen")der Variablen x,y in einander übergeführt werden.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:00 So 20.01.2008 | Autor: | Quadral |
Hallo Somebody,
ich weiß nicht, ob das mit den Punktmengen richtig verstanden habe, aber das andere leuchtet mir doch sehr ein.
Danke!
|
|
|
|