matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenRelation auf der Potenzmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Relationen" - Relation auf der Potenzmenge
Relation auf der Potenzmenge < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation auf der Potenzmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 05.11.2008
Autor: tobiashoch

Aufgabe
Es sei A eine Menge. R = {(X,Y) | [mm] X\subseteq [/mm] A [mm] \wedge Y\subseteq [/mm] A [mm] \wedge X\subseteq [/mm] Y } ist dann eine Relation auf der Potenzmenge [mm] \mathcal{P}(A). [/mm] Ist R reflexiv? Beweisen Sie Ihre Aussage.

Ich weiß nicht ob diese Relation Reflexiv ist. Laut Definition, heißt Reflexiv das eine Relation auf eine Menge A reflexiv ist, wenn x [mm] \in [/mm] A und x [mm] \in [/mm] A mit x [mm] \in [/mm] A in Relation steht, xRx.

Daher weiß ich auch nicht Wie ich das beweisen soll.

Hoffe ich konnte mein Problem anschaulich darstellen. Wäre danke für Hilfe, Lösungen und Erklärungen zu dem ganzem.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Relation auf der Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Do 06.11.2008
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Es sei A eine Menge. R = {(X,Y) | [mm]X\subseteq[/mm] A [mm]\wedge Y\subseteq[/mm]
> A [mm]\wedge X\subseteq[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Y } ist dann eine Relation auf der

> Potenzmenge [mm]\mathcal{P}(A).[/mm] Ist R reflexiv? Beweisen Sie
> Ihre Aussage.
>  Ich weiß nicht ob diese Relation Reflexiv ist. Laut
> Definition, heißt Reflexiv das eine Relation auf eine Menge
> A reflexiv ist, wenn x [mm]\in[/mm] A und x [mm]\in[/mm] A mit x [mm]\in[/mm] A in
> Relation steht, xRx.
>
> Daher weiß ich auch nicht Wie ich das beweisen soll.

Hallo,

[willkommenmr].

Immerhin scheinst Du doch eine Ahnung davon zu haben, was eine reflexive Relation ist.

Kurz gesagt: eine Relation ist reflexiv, wenn jedes Element zu sich selbst in Relation steht.


Schauen wir uns Deine konkrete Relation R an:

In R sin d Paare (X,Y). Woraus bestehen die Komponenten: aus Teilmengen von A.
Kein Wunder, denn es wird hier ja auch eine Relation auf der Potenzmenge von A betrachtet.

Welche Paare von Teilemengen X,Y von [mm] \mathcal{P}(A) [/mm] sind nun in R? Es sind diejenigen, für die X [mm] \subseteq [/mm] Y gilt. das siehst Du, wenn Du Dir genau anguckst, wie R definiert wurde.

Die Frage ist nun folgende:

wenn [mm] X\in \mathcal{P}(A), [/mm] ist dann (X,X) [mm] \in [/mm] R.

Dies mußt Du nun entscheiden und begründen.

Gruß v. Angela





>
> Hoffe ich konnte mein Problem anschaulich darstellen. Wäre
> danke für Hilfe, Lösungen und Erklärungen zu dem ganzem.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]