matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenRelation: Eigenschaften
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Relationen" - Relation: Eigenschaften
Relation: Eigenschaften < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Relation: Eigenschaften: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:12 Sa 20.03.2010
Autor: itse

Aufgabe
Wann ist eine Relation über [mm] A(\subseteq [/mm] A x A):

a) reflexiv
b) irreflexiv
c) symmetrisch
d) antisymmetrisch
e) transitiv
f) total
g) Äquivalenzrelation

?

Hallo,

Relation R über M =  [mm] A(\subseteq [/mm] A x A)

a) die Relation ist reflexiv, wenn für alle x [mm] \in [/mm] M gilt: (x, x) [mm] \in [/mm] R

Angenommen, die Menge A hat folgende Elemente A = {1,2}, dann ist A x A = {(1,1),(1,2),(2,1),(2,2)}

Die Relation besteht doch zwischen A und A x A, A soll die Teilmenge von A x A sein, jedes Element bzw. geordnetes Paar von A ist auch in A x A enthalten.

Somit gilt doch für die Relation, damit diese reflexiv ist, dass jedes geordnete Paar in A auch in A x A enthalten ist?


b) irreflexiv: für alle x [mm] \in [/mm] M gilt: (x,x) [mm] \in [/mm] R

Das somit kein geordnetes Paar aus A in A x A vorkommt.


c) symmetrisch: für alle x,y [mm] \in [/mm] M gilt: (x,y) [mm] \in [/mm] R <-> (y,x) [mm] \in [/mm] R


d) antisymmetrisch: für alle x,y [mm] \in [/mm] M gilt: (x,y) [mm] \in [/mm] R und (y,x) [mm] \in [/mm] R -> x = y


e) transitiv: für alle x,y,z [mm] \in [/mm] M gilt: (x,y) [mm] \in [/mm] R und (y,z) [mm] \in [/mm] R -> (x,z) [mm] \in [/mm] R


f) total: für alle x,y,z [mm] \in [/mm] M gilt: x [mm] \not= [/mm] y -> (x,y) [mm] \in [/mm] R oder (y,x) [mm] \in [/mm] R


g) Wenn die Relation folgende drei Eigenschaften erfüllt: reflexiv, symmetrisch und transitiv


Würde dies so stimmen? Die Definitionen sind etwas abstrakt, somit kann ich mir nicht allzu viel darunter vorstellen. Über Beispiele wäre ich sehr dankbar, vor allem was es mit der angegebenen Relation auf sich hat.

Vielen Dank
itse

        
Bezug
Relation: Eigenschaften: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 22.03.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]