matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRekursionsformel für Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Rekursionsformel für Integral
Rekursionsformel für Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rekursionsformel für Integral: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:02 Mi 07.01.2009
Autor: marcello

Aufgabe
Es sei
[mm] I_{n} [/mm] = [mm] \integral_{}^{}{x^{n}*e^{ax} dx} [/mm]
mit a [mm] \not= [/mm] 0 reell und n [mm] \ge [/mm] 0 ganzzahlig.

Mit Hilfe der partiellen Integration gebe man eine Rekursionsformel zur Berechnung von [mm] I_{n} [/mm] an mit n [mm] \ge [/mm] 1. Weiterhin gebe man [mm] I_{0}, I_{1} [/mm] und [mm] I_{2} [/mm] an.

Ich komme bei dieser Aufgabenstellung leider nicht weiter. Mir fehlt jeglicher Ansatz zur Lösung des Problems.

Meine bisherigen Überlegungen waren, durch die partielle Integration ein [mm] I_{n+1} [/mm] zu erzeugen und die Formel nach [mm] I_{n+1} [/mm] umzustellen. Jedoch ist das Ergebnis nie befriedigend, da ich durch die partielle Integration immer ein "Restintegral" habe, dass ich leider nicht wegbekomme.

Die Lösungssuche hat mich schon einige Nerven gekostet und ich bin für jede Hilfe absolut dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Rekursionsformel für Integral: Rekursion
Status: (Antwort) fertig Status 
Datum: 17:36 Mi 07.01.2009
Autor: Loddar

Hallo marcello,

[willkommenmr] !!


Du musst hier aus [mm] $I_n$ [/mm] ein [mm] $I_{n\red{-}1}$ [/mm] ermitteln. Und dass dort noch immer ein Restintegral verbleibt, macht ja gerade die Rekursion aus.

Wie lautet denn das Ergebnis Deiner 1. partiellen Integration?


Gruß
Loddar


Bezug
                
Bezug
Rekursionsformel für Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mi 07.01.2009
Autor: marcello

Also, mein Ergebnis aus der ersten partiellen Integration lautet:
[mm] I_{n} [/mm] = [mm] x^{n}*\bruch{e^{a*x}}{a}-\integral_{}^{}{n*x^{n-1}*\bruch{e^{a*x}}{a} dx} [/mm]

Theoretisch könnte ich die partielle Integration ja unendlich oft durchführen. Ich denke, mein Problem ist, dass ich den Punkt, ab dem ich die Formel zu [mm] I_{n} [/mm] = [mm] I_{n-1}*\alpha [/mm] zusammenfassen kann, nicht sehe.
Wenn ich jetzt die partielle Integration noch mehrmals durchführe, müsste sich ja ein gewisses Schema im Ergebnis abzeichen, aus dem ich vielleicht meine Rekusionsformel ableiten könnte, oder?

Danke für die Hilfe!!! :)

Bezug
                        
Bezug
Rekursionsformel für Integral: umgeformt
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 07.01.2009
Autor: Loddar

Hallo marcello!


Formen wir noch etwas um:
[mm] $$I_{n} [/mm] \ = \ [mm] x^n*\bruch{e^{a*x}}{a}-\integral{n*x^{n-1}*\bruch{e^{a*x}}{a} \ dx} [/mm] \ = \ [mm] x^n*\bruch{e^{a*x}}{a}-\bruch{n}{a}*\blue{\integral{x^{n-1}*e^{a*x} \ dx}} [/mm] \ = \ [mm] x^n*\bruch{e^{a*x}}{a}-\bruch{n}{a}*\blue{I_{n-1}}$$ [/mm]
Fertig!


Gruß
Loddar


Bezug
                                
Bezug
Rekursionsformel für Integral: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Mi 07.01.2009
Autor: marcello

Danke für die schnelle und tolle Hilfe! :)

Beste Grüße,
marcello

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]