matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Do 07.03.2013
Autor: JamesDean

Aufgabe
Für welche x ∈ R gilt: [mm] \summe_{i=0}^{\infty} (2*x)^i [/mm] = 1/(1-2*x)

Meine Überlegung: [mm] q^i=1/(1-q) [/mm] wenn |q|<1

also wenn: |2*x|<1

Hallo zusammen,

wie bekomme ich jetzt das x heraus ?

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Do 07.03.2013
Autor: abakus


> Für welche x ∈ R gilt: [mm]\summe_{i=0}^{\infty} (2*x)^i[/mm] =
> 1/(1-2*x)
>  
> Meine Überlegung: [mm]q^i=1/(1-q)[/mm] wenn |q|<1
>  
> also wenn: |2*x|<1
>  Hallo zusammen,
>  
> wie bekomme ich jetzt das x heraus ?

Hallo,
|2x|=1 bedeutet [mm] x=$\pm [/mm] 0,5$.
Denke daran, dass du diese beiden Intervallgrenzen separat untersuchen musst.
Gruß Abakus  


Bezug
        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:05 Do 07.03.2013
Autor: fred97


> Für welche x ∈ R gilt: [mm]\summe_{i=0}^{\infty} (2*x)^i[/mm] =
> 1/(1-2*x)
>  
> Meine Überlegung: [mm]q^i=1/(1-q)[/mm] wenn |q|<1

Du meinst wohl [mm]\summe_{i=0}^{\infty}q^i=1/(1-q)[/mm] wenn |q|<1

>  
> also wenn: |2*x|<1
>  Hallo zusammen,
>  
> wie bekomme ich jetzt das x heraus ?  

|2*x|<1  [mm] \gdw [/mm] |x|<1/2  [mm] \gdw [/mm] -1/2<x<1/2

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]