matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Quotientenkriterium
Status: (Frage) beantwortet Status 
Datum: 18:22 Fr 08.07.2011
Autor: DARKMAN_X

Aufgabe
[mm] \summe_{n=1}^{\infty} \bruch{n^{n}}{7^n (n+1)!} [/mm]

Ich habe mich mal an die aufgabe gemacht unf komme an diesem Punkt nicht weiter...Könnt Ihr mir bitte erklären was ich machen muss...

[mm] \bruch{(n+1)^{n+1}{7^n}(n+1)!}{{7^{n+1}}(n+2)!{n^n}} [/mm]

Erweitern...

[mm] \bruch{(n+1)^{n+1}{7^n}(n+1)(n+2)!}{{7^{n}}7(n+2)!{n^n}} [/mm]

Nach dem Kürzen entsteht...

[mm] \bruch{(n+1)^{n+1}(n+1)}{7 {n^n}} [/mm]

Danach

[mm] \bruch{(n+1)^{n}(n+1)(n+1)}{7{n^n}} [/mm]

Und jetzt

[mm] (\bruch{(n+1)^{3}}{7n})^{n} [/mm]

Ab hier komme ich leider nicht mehr weiter...Würde jetzt diesen Schritt machen aber weiss nicht ob er richtig ist...

[mm] lim_{n\to\infty}(\bruch{n(1+\bruch{1}{n}^{3})}{n (7)})^{n} [/mm]

Daraus würde ich dann dieses Ergebnis erhalten

[mm] \bruch{e^{3}}{7} [/mm]

Danke für eure Hilfe schonmal..

MfG [mm] DARKMAN_X [/mm]

Diese Frage wurde in keinem anderen Forum gestellt.

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Fr 08.07.2011
Autor: schachuzipus

Hallo DARKMAN_X,


> [mm]\summe_{n=1}^{\infty} \bruch{n^{n}}{7^n (n+1)!}[/mm]
>  Ich habe
> mich mal an die aufgabe gemacht unf komme an diesem Punkt
> nicht weiter...Könnt Ihr mir bitte erklären was ich
> machen muss...
>  
> [mm]\bruch{(n+1)^{n+1}{7^n}(n+1)!}{{7^{n+1}}(n+2)!{n^n}}[/mm] [ok]
>  
> Erweitern...
>  
> [mm]\bruch{(n+1)^{n+1}{7^n}(n+1)(n+2)!}{{7^{n}}7(n+2)!{n^n}}[/mm] [haee]

Wie hast du denn da erweitert?

Im Nenner: [mm](n+2)!=(n+1)!\cdot{}(n+2)[/mm]

Dann kannst du [mm](n+1)![/mm] kürzen.

Außerdem [mm]7^{n+1}=7\cdot{}7^n[/mm], da kannst du [mm]7^n[/mm] kürzen

Weiter im Zähler: [mm](n+1)^{n+1}=(n+1)\cdot{}(n+1)^n[/mm]

Letzteres packe mit dem [mm]n^n[/mm] im Nenner zusammen zu [mm]\left(\frac{n+1}{n}\right)^n=\left(1+\frac{1}{n}\right)^n[/mm]

Da sollte es klingeln!

Bleibt das [mm](n+1)[/mm] im Zähler, das du mit dem [mm](n+2)[/mm] aus dem Nenner zusammenpacken kannst, das strebt gegen 1

Insgesamt [mm]\frac{1}{7}\cdot{}\lim\limits_{n\to\infty}\left(1+\frac{1}{n}\right)^n=\ldots[/mm]

>  
> Nach dem Kürzen entsteht...
>  
> [mm]\bruch{(n+1)^{n+1}(n+1)}{7 {n^n}}[/mm]

Nein, eher [mm]\frac{(n+1)\red{(n+1)^n}}{7\cdot{}(n+2)\cdot{}\red{n^n}}[/mm]

Schreibe dir das nochmal ausführlich hin mit meinen Anmerkungen oben ...

>  
> Danach
>  
> [mm]\bruch{(n+1)^{n}(n+1)(n+1)}{7{n^n}}[/mm]
>  
> Und jetzt
>  
> [mm](\bruch{(n+1)^{3}}{7n})^{n}[/mm]
>  
> Ab hier komme ich leider nicht mehr weiter...Würde jetzt
> diesen Schritt machen aber weiss nicht ob er richtig
> ist...
>  
> [mm]lim_{n\to\infty}(\bruch{n(1+\bruch{1}{n}^{3})}{n (7)})^{n}[/mm]
>  
> Daraus würde ich dann dieses Ergebnis erhalten
>  
> [mm]\bruch{e^{3}}{7}[/mm]
>  
> Danke für eure Hilfe schonmal..
>  
> MfG [mm]DARKMAN_X[/mm]
>  
> Diese Frage wurde in keinem anderen Forum gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Fr 08.07.2011
Autor: DARKMAN_X

Vorab danke für deine schnelle Hilfe...

[mm] lim_{n\to\infty}(\bruch{n(1+\bruch{1}{n})}{n (1)})^{n}*\bruch{n(1+\bruch{1}{n})}{n (7+\bruch{14}{n})}=\bruch{1}{7}e [/mm]

Ich hoffe ich habe das richtig verstanden :D

MfG

[mm] DARKMAN_X [/mm]

Bezug
                        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:02 Sa 09.07.2011
Autor: schachuzipus

Hallo nochmal,


> Vorab danke für deine schnelle Hilfe...
>  
> [mm]lim_{n\to\infty}(\bruch{n(1+\bruch{1}{n})}{n (1)})^{n}*\bruch{n(1+\bruch{1}{n})}{n (7+\bruch{14}{n})}=\bruch{1}{7}e[/mm] [ok]
>  
> Ich hoffe ich habe das richtig verstanden :D

Ja, das ist richtig.

Was schließt du nun daraus, was das konvergenzverhalten der Ausgangsreihe angeht?

>  
> MfG
>  
> [mm]DARKMAN_X[/mm]  

Gruß
schachuzipus


Bezug
                                
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 So 10.07.2011
Autor: DARKMAN_X

Daraus schließe ich das die Reihe konvergiert.

[mm] \bruch{1}{7}e [/mm] < q < 1


MfG

[mm] DARKMAN_X [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]