Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Berechne
+
lg Michael
|
|
|
|
Hallo Mike!
Der entscheidende Hinweis ist doch schon gegeben: Du musst hier eine Partialbruchzerlegung vornehmen:
[mm] $$\bruch{1}{n^3-n} [/mm] \ = \ [mm] \bruch{1}{n*\left(n^2-1\right)} [/mm] \ = \ [mm] \bruch{1}{n*(n+1)*(n-1)} [/mm] \ = \ [mm] \bruch{A}{n}+\bruch{B}{n+1}+\bruch{C}{n-1}$$
[/mm]
Nun die 3 hinteren Brüche mal auf den Hauptnenner durch entsprechendes Erweitern bringen und anschließend einen Koeffizientenvergleich durchführen:
$$1 \ = \ [mm] n^2*\red{0}+n*\blue{0}+\green{1} [/mm] \ = \ [mm] n^2*\red{(...)}+n*\blue{(...)}+\green{(...)}$$
[/mm]
Gruß vom
Roadrunner
|
|
|
|
|
Hallo Mike,
> also ich bekomme dann für a= -1 und b= 1/2 und c=1/2.
>
> nur wie rechne ich dann weiter?? ich habe dann drei brüche.
> ich habe mir schon überlegt ob ich es mit dem Majoranten-
> oder Minorantenkriterium lösen kann finde aber den ansatz
> dann nicht.
Wir betreiben ja den ganzen Aufwand mit den Partialsummen, weil der Reihenwert/Grenzwert der Reihe der limes der Partialsummen ist, also:
[mm] $\sum\limits_{n=3}^{\infty}\frac{1}{n^3-n}=\lim\limits_{k\to\infty}\sum\limits_{n=3}^k\frac{1}{n^3-n}=\lim\limits_{k\to\infty}\sum\limits_{n=3}^k\left(-\frac{1}{n}+\frac{1}{2}\cdot{}\frac{1}{n+1}+\frac{1}{2}\cdot{}\frac{1}{n-1}\right)$
[/mm]
[mm] $=\lim\limits_{k\to\infty}\frac{1}{2}\cdot{}\sum\limits_{n=3}^k\left(-\frac{2}{n}+\frac{1}{n+1}+\frac{1}{n-1}\right)=\frac{1}{2}\cdot{}\lim\limits_{k\to\infty}\underbrace{\sum\limits_{n=3}^k\left(-\frac{2}{n}+\frac{1}{n+1}+\frac{1}{n-1}\right)}_{=S_k}$
[/mm]
Nun schreibe mal solch eine k-te Partialsumme hin, das ergibt eine Teleskopsumme, in der sich die meisten Terme wegheben.
[mm] $S_k=\left(\green{-\frac{2}{3}}\red{+\frac{1}{4}}+\green{\frac{1}{2}}\right)+\left(\red{-\frac{2}{4}}+\frac{1}{5}+\green{\frac{1}{3}}\right)+\left(-\frac{2}{5}+\frac{1}{6}\red{+\frac{1}{4}}\right)+\left(-\frac{2}{6}+\frac{1}{7}+\frac{1}{5}\right)+\left(-\frac{2}{7}+\frac{1}{8}+\frac{1}{6}\right)+.....$
[/mm]
[mm] $....+\left(-\frac{2}{k-3}+\frac{1}{k-2}+\frac{1}{k-4}\right)+\left(-\frac{2}{k-2}+\frac{1}{k-1}+\frac{1}{k-3}\right)+\left(-\frac{2}{k-1}+\green{\frac{1}{k}}+\frac{1}{k-2}\right)+\left(\green{-\frac{2}{k}+\frac{1}{k+1}}+\frac{1}{k-1}\right)$
[/mm]
So hier siehst du, dass sich in dieser Teleskopsumme fast alles weghebt, bis auf die grünen Terme. Und zwar nach dem roten Schema: mittlerer Term aus der einen Klammer mit dem ersten Term aus der nächsten Klammer und dem letzten Term aus der übernächsten Klammer.
Sieh dir das mal genau an
Also [mm] $S_k=-\frac{2}{3}+\frac{1}{2}+\frac{1}{3}+\frac{1}{k}-\frac{2}{k}+\frac{1}{k+1}\longrightarrow \frac{1}{6}$ [/mm] für [mm] $k\to\infty$
[/mm]
Das dann noch [mm] \cdot{}\frac{1}{2}, [/mm] das wir aus der Summe vor den limes gezigen hatten, ergibt als Reihenwert also [mm] \frac{1}{12}
[/mm]
LG
schachuzipus
|
|
|
|
|