Reihe mit Sin/Cos-Ausdrücken < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:29 Sa 04.06.2005 | Autor: | Tom23 |
Hallo,
ich sitze jetzt schon länger über folgendem Problem und komme einfach nicht voran:
Seien $k,l,n [mm] \in \IN$ [/mm] mit $1 [mm] \le [/mm] k,l [mm] \le [/mm] n$. Ich möchte zeigen, dass
[mm] \summe_{j=1}^{n} [/mm] sin [mm] \bruch{\pi j l}{n+1} [/mm] sin [mm] \bruch{\pi j k}{n+1}=0 [/mm] , falls $k [mm] \not= [/mm] l$. Der Ausdruck auf der linken Seite lässt sich leicht umformen zu
[mm] \bruch{1}{2} \summe_{j=1}^{n} [/mm] (cos [mm] \bruch{\pi j (l-k)}{n+1} [/mm] - cos [mm] \bruch{\pi j (l+k)}{n+1}) [/mm] , aber weiter komme ich damit auch nicht.
Übrigens bin ich mir sicher, dass die Aussage stimmt, weil ich die Rechnungen mit Matlab für etliche Beispiele durchgerechnet habe, aber das ist natürlich kein Beweis... also wäre toll, wenn mir hier jemand weiterhelfen könnte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
> [mm]\bruch{1}{2} \summe_{j=1}^{n}[/mm] (cos [mm]\bruch{\pi j (l-k)}{n+1}[/mm]
- cos [mm]\bruch{\pi j (l+k)}{n+1})[/mm] , aber weiter komme ich
> damit auch nicht.
forme die Summe in eine Potenzreihe um:
[mm]\cos \;x\; = \;\sum\limits_{i = 0}^\infty {\left( { - 1} \right)^i \;\frac{{x^{2i} }}{{2i!}}} [/mm]
Gruß
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:54 So 05.06.2005 | Autor: | Tom23 |
ja danke erstmal, scheint eine interessante Idee zu sein, aber ich sehe noch nicht recht, wie mir das konkret weiterhilft:
[mm] \summe_{j=1}^{n} [/mm] (cos [mm] \bruch{\pi j (l-k)}{n+1} [/mm] - cos [mm] $\bruch{\pi j (l+k)}{n+1}) =\summe_{j=1}^{n} (\summe_{p=0}^{ \infty} (-1)^{p} \bruch{ (\bruch{\pi j (l-k)}{n+1})^{2p}}{2p!}- \summe_{p=0}^{ \infty} (-1)^{p} \bruch{ (\bruch{\pi j (l+k)}{n+1})^{2p}}{2p!})$$=\summe_{j=1}^{n} \summe_{p=0}^{ \infty} \bruch{ (-1)^{p} \pi^{2p} j^{2p}}{2p! (n+1)^{2p}} ((l-k)^{2p}-(l+k)^{2p})$
[/mm]
,aber warum ist das jetzt $=0$ für $l [mm] \not= [/mm] k$?
Grüße Tom
|
|
|
|
|
Hallo Tom,
> [mm]\summe_{j=1}^{n}[/mm] (cos [mm]\bruch{\pi j (l-k)}{n+1}[/mm] - cos
> [mm]\bruch{\pi j (l+k)}{n+1}) =\summe_{j=1}^{n} (\summe_{p=0}^{ \infty} (-1)^{p} \bruch{ (\bruch{\pi j (l-k)}{n+1})^{2p}}{2p!}- \summe_{p=0}^{ \infty} (-1)^{p} \bruch{ (\bruch{\pi j (l+k)}{n+1})^{2p}}{2p!})[/mm][mm]=\summe_{j=1}^{n} \summe_{p=0}^{ \infty} \bruch{ (-1)^{p} \pi^{2p} j^{2p}}{2p! (n+1)^{2p}} ((l-k)^{2p}-(l+k)^{2p})[/mm]
ich denke, da hilft es weiter, wenn [mm]((l-k)^{2p}-(l+k)^{2p})[/mm] ausmultipliziert wird.
Gruß
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:12 So 05.06.2005 | Autor: | Tom23 |
Also ich habe es jetzt mal ausmultipliziert, mit dem Binomischen Satz:
[mm](l-k)^{2p}-(l+k)^{2p}=[/mm]
[mm]l^{2p}+ \vektor{n \\ 1}l^{2p-1}(-k)+\vektor{n \\ 2}l^{2p-2}(-k)^2+...+\vektor{n \\ n-1}l(-k)^{2p-1}+(-k)^{2p}[/mm]
[mm]-(l^{2p}+ \vektor{n \\ 1}l^{2p-1}k+\vektor{n \\ 2}l^{2p-2}k^2+...+\vektor{n \\ n-1}l k^{2p-1}+k^{2p}
)[/mm]
[mm]=-2(\vektor{n \\ 1}l^{2p-1}k+\vektor{n \\ 3}l^{2p-3}k^3+...+\vektor{n \\ n-3}l^{3}k^{2p-3}+\vektor{n \\ n-1}l k^{2p-1})[/mm]
und damit insgesamt
[mm] \summe_{j=1}^{n} [/mm] (cos [mm] \bruch{\pi j (l-k)}{n+1} [/mm] - cos [mm] \bruch{\pi j (l+k)}{n+1})= [/mm]
[mm] \summe_{j=1}^{n} \summe_{p=0}^{ \infty} \bruch{ (-1)^{p+1} \pi^{2p} j^{2p}}{p! (n+1)^{2p}} (\vektor{n \\ 1}l^{2p-1}k+\vektor{n \\ 3}l^{2p-3}k^3+...+\vektor{n \\ n-3}l^{3}k^{2p-3}+\vektor{n \\ n-1}l k^{2p-1})
[/mm]
, aber was hilft mir das...?
Also ich glaube, so komme ich nicht weiter, und auch nicht mit der von leduart vorgeschlagenen Vereinfachung, denn das Problem ist doch, dass die einzelnen Summanden von [mm] \summe_{j=1}^{n} [/mm] (cos [mm] \bruch{\pi j (l-k)}{n+1} [/mm] - cos [mm] \bruch{\pi j (l+k)}{n+1}) [/mm] ja gar nicht 0 sind, sondern sich nur letztlich in der Summe gegenseitig aufheben (für $k [mm] \not= [/mm] l$). Aber wie kann man das beweisen?
Grüße Tom
|
|
|
|
|
Hallo Tom,
> Also ich glaube, so komme ich nicht weiter, und auch nicht
> mit der von leduart vorgeschlagenen Vereinfachung, denn das
> Problem ist doch, dass die einzelnen Summanden von
> [mm]\summe_{j=1}^{n}[/mm] (cos [mm]\bruch{\pi j (l-k)}{n+1}[/mm] - cos
> [mm]\bruch{\pi j (l+k)}{n+1})[/mm] ja gar nicht 0 sind, sondern sich
> nur letztlich in der Summe gegenseitig aufheben (für [mm]k \not= l[/mm]).
> Aber wie kann man das beweisen?
Vielleicht verwendest Du mal irgendwelche Gesetzmäßigkeiten, wie
[mm]\begin{gathered}
\sin \left( {\frac{\pi }
{2}\; + \;\alpha } \right)\; = \;\sin \left( {\frac{\pi }
{2}\; - \;\alpha } \right) \hfill \\
\sin \left( {\pi \; - \;\alpha } \right)\; = \; - \sin \left( \alpha \right) \hfill \\
\end{gathered} [/mm]
Gruß
MathePower
|
|
|
|
|
Status: |
(Frage) für Interessierte | Datum: | 19:01 Mo 06.06.2005 | Autor: | Tom23 |
Okay danke, ich habe das Problem durch Aufspalten der Summe und Fallunterscheidung für [mm]l-k[/mm] nun auf folgendes Problem reduziert:
[mm]\summe_{j=1}^{n} cos ( \bruch{2 \pi j}{n})=0[/mm]
bzw. äquivalent dazu
[mm]\summe_{j=1}^{n} (cos \bruch{\pi j}{n})^2=\summe_{j=1}^{n} (sin \bruch{\pi j}{n})^2[/mm] ( [mm]= \bruch{n}{2}[/mm] )
Das sieht doch jetzt eigentlich recht einfach aus und ist mit Sicherheit richtig, aber ich sehe auch für diese Aussagen noch keinen Beweis...
Grüße Tom
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:12 Fr 10.06.2005 | Autor: | matux |
Hallo Tom!
Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.
Vielleicht hast Du ja beim nächsten Mal mehr Glück .
Viele Grüße,
Matux, der Foren-Agent
Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:19 So 05.06.2005 | Autor: | leduart |
Hallo
Ich habs nicht durchgerechnet, aber ich glaub wenn du [mm] cos(ix)=\bruch{e^{x}+e^{-x}}{2} [/mm] ersetzt wird es viel einfacher! evt. dann die Reihen für e
Gruss leduart
|
|
|
|