matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisReihe konv. dann auch Summen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Reihe konv. dann auch Summen
Reihe konv. dann auch Summen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe konv. dann auch Summen: Verständnis
Status: (Frage) für Interessierte Status 
Datum: 12:46 Do 01.12.2005
Autor: Reaper

Hallo.....hab Fragen zu einem Satz im Skript:

Sei  [mm] \summe_{n=1}^{ \infty} a_{n} [/mm] eine Reihe 1 = [mm] n_{1} [/mm] < [mm] n_{2} [/mm] < [mm] n_{3}... [/mm] und für alle i [mm] \in \IN [/mm] : [mm] A_{i} [/mm] := [mm] \summe_{j=n_{i}}^{ n_{i+1}-1} a_{j} [/mm]

Dann gilt: Falls   [mm] \summe_{n=1}^{ \infty} a_{n} [/mm] konvergiert, dann konvergiert auch   [mm] \summe_{i=1}^{ \infty} A_{i} [/mm] ; die Summen stimmen überein.


[mm] A_{i} [/mm] haben wir so bestimmt:

[mm] (a_{1} [/mm] + [mm] a_{2} [/mm] ) + [mm] (a_{3} [/mm] + ... + ..... + ... ) (+.....+..)(...+....)
[mm] (a_{1} [/mm] + [mm] a_{2} [/mm] )  :=      [mm] A_{1} [/mm]                  
[mm] (a_{3} [/mm] + ... + ..... + ... )  :=   [mm] A_{2} [/mm]          
(+.....+..) :=  [mm] A_{3} [/mm]
,.....usw.

Wie weiß ich dass [mm] A_{1},... [/mm] genauso ausschaut?
Darf ich also beliebig in einer konvergenten Reihe klammern und es bleibt immer der selbe Grenzwert? Ist dass die Aussage von dem Satz?
Ich werd aus diesen Satz nicht ganz schlau was mir der bringen soll....


mfg,
Hannes




        
Bezug
Reihe konv. dann auch Summen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Sa 03.12.2005
Autor: matux

Hallo Hannes!


Leider konnte Dir keiner hier auch mit diesem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]