matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe, Konvergenz o. Divergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Reihe, Konvergenz o. Divergenz
Reihe, Konvergenz o. Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe, Konvergenz o. Divergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:42 Mi 07.05.2008
Autor: Xerxes2504

Aufgabe
Beweisen Sie die Konvergenz bzw. die Divergenz durch geeigneten
Vergleich:
a)   [mm] \summe_{k=0}^{\infty} \bruch{1}{10^k+1} [/mm]  


b)       [mm] \summe_{k=2}^{\infty} \bruch{1}{ln(k)} [/mm]  

Hallo zusammen,

hab da ein kleines Problem bei den Aufgaben zu den Reihen.

a) Habe ich gelöst indem ich die bekannte konvergente Reihe
[mm] \summe_{k=1}^{\infty} \bruch{1}{2k} [/mm] genommen habe und angegeben habe das  [mm] |a_n|<=b_n [/mm] mit [mm] a_n=\bruch{1}{10^n+1} [/mm] und
[mm] b_n=\bruch{1}{2n} [/mm] und daher folgt das [mm] b_n [/mm] konvergente Majorante von [mm] a_n [/mm] ist und daher
[mm] \summe_{k=0}^{\infty} \bruch{1}{10^k+1} [/mm] konvergiert

b) Habe ich analog gelöst indem ich die bekannte divergente Reihe [mm] \summe_{k=1}^{\infty} \bruch{1}{k} [/mm] genommen habe und angegeben habe das [mm] a_n>=b_n [/mm] ist mit [mm] a_n= \bruch{1}{ln(n)} [/mm]
und [mm] b_n= \bruch{1}{n} [/mm] und daher folgt das [mm] b_n [/mm] divergente Minorante von [mm] a_n [/mm] ist und daher
[mm] \summe_{k=2}^{\infty} \bruch{1}{ln(k)} [/mm] divergiert.

Meine Frage nun dazu , ist das in Ordnung? Kann ich 2 Reihen zueinander Abschätzen wobei die eine bei k=0 und die andere bei k=2 anfängt?(für mich wäre das logich da es im unendlichen ja kein Unterschied macht ob ich endlich viele Glieder dazu addiere oder abziehe)
Oder muss ich noch etwas beachten?

Vielen Danke,
Tommy

        
Bezug
Reihe, Konvergenz o. Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mi 07.05.2008
Autor: schachuzipus

Hallo Tommy,

dein Vorgehen ist an sich richtig und beruht auf dem Majoranten- oder Vergleichskriterium


> Beweisen Sie die Konvergenz bzw. die Divergenz durch
> geeigneten
>  Vergleich:
>  a)   [mm]\summe_{k=0}^{\infty} \bruch{1}{10^k+1}[/mm]  
>
>
> b)       [mm]\summe_{k=2}^{\infty} \bruch{1}{ln(k)}[/mm]  
> Hallo zusammen,
>  
> hab da ein kleines Problem bei den Aufgaben zu den Reihen.
>  
> a) Habe ich gelöst indem ich die bekannte konvergente
> Reihe
>  [mm]\summe_{k=1}^{\infty} \bruch{1}{2k}[/mm] [notok]

Das ist eine bekannte divergente Reihe, du hast sie weiter unten auch benutzt ;-)

Du kannst doch [mm] $\summe_{k=1}^{\infty} \bruch{1}{2k}$ [/mm] schreiben als [mm] $\frac{1}{2}\cdot{}\summe_{k=1}^{\infty} \bruch{1}{k}$ [/mm]

Und wenn [mm] $\summe_{k=1}^{\infty} \bruch{1}{k}$ [/mm] gegen [mm] $\infty$ [/mm] divergiert, so tut es [mm] $\frac{1}{2}\cdot{}\summe_{k=1}^{\infty} \bruch{1}{k}$ [/mm] auch




> genommen habe und
> angegeben habe das  [mm]|a_n|<=b_n[/mm] mit [mm]a_n=\bruch{1}{10^n+1}[/mm]

Vom Prinzip her richtig, finde eine konvergente Majorante, also eine größere Reihe, die konvergent ist, also einen endlichen Reihenwert hat, dann bleibt deiner armen kleineren Ausgangsreihe nichts anderes übrig als auch einen endlichen Wert zu haben, also zu konvergieren

Als Tipp werfe ich mal das Stichwort "geometrische Reihe" in den Raum.

Versuche also deine Reihe zu vergrößern und (naheliegend) gegen eine konvergente geometrische Reihe abzuschätzen

> und
>  [mm]b_n=\bruch{1}{2n}[/mm] und daher folgt das [mm]b_n[/mm] konvergente
> Majorante von [mm]a_n[/mm] ist und daher
> [mm]\summe_{k=0}^{\infty} \bruch{1}{10^k+1}[/mm] konvergiert
>  
> b) Habe ich analog gelöst indem ich die bekannte divergente
> Reihe [mm]\summe_{k=1}^{\infty} \bruch{1}{k}[/mm] [ok]

Genau!

> genommen habe und
> angegeben habe das [mm]a_n>=b_n[/mm] ist mit [mm]a_n= \bruch{1}{ln(n)}[/mm]
>  
> und [mm]b_n= \bruch{1}{n}[/mm] und daher folgt das [mm]b_n[/mm] divergente
> Minorante von [mm]a_n[/mm] ist und daher
> [mm]\summe_{k=2}^{\infty} \bruch{1}{ln(k)}[/mm] divergiert. [ok]
>  
> Meine Frage nun dazu , ist das in Ordnung?

(b) ja, (a) nein

> Kann ich 2
> Reihen zueinander Abschätzen wobei die eine bei k=0 und die
> andere bei k=2 anfängt?

Lasse einfach beide Reihen beim gleichen Startwert beginnen, du kannst immer endlich viele(!!) Glieder bei der Reihe wegnehmen oder hinzufügen ohne das Konvergenzverhalten zu ändern

Da eine endliche Summe immer endlich ist, ändert das Wegnehmen oder Hinzufügen von endlich vielen Summanden nix am Konvergenzverhalten (also an der Konvergenz bzw. Divergenz) der Reihe (wohl aber am konkreten Grenz- oder Reihenwert)

> (für mich wäre das logich da es im
> unendlichen ja kein Unterschied macht ob ich endlich viele
> Glieder dazu addiere oder abziehe)
>  Oder muss ich noch etwas beachten?
>  
> Vielen Danke,
>  Tommy


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]