matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikRegression mit 2 Unbekannten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Regression mit 2 Unbekannten
Regression mit 2 Unbekannten < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regression mit 2 Unbekannten: Regression
Status: (Frage) beantwortet Status 
Datum: 12:59 Mo 19.12.2011
Autor: toto45

Aufgabe
Regression

Hallo,

ich habe verschiedene Messungen durchgeführt. Dabei sind zwei Unbekannte zu ermitteln. Ich habe 8 Messungen also 8 Gleichungen mit 2 Unbekannten. Nun möchte ich eine Regression dazu durchführen mit Excel um die zwei Unbekannten zu ermitteln.

Die Gleichung sieht wie folgt aus:
A=B*x+C*y
A,B,C sind bekannt
x, y die Unbekannten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie geht das und wie sieht die Therie zu solchen Problemen aus. Ich habe das mit der Regression nur mit einer Unbekannten im Web gefunden.
Wäre super wenn einer helfen kann

        
Bezug
Regression mit 2 Unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Di 20.12.2011
Autor: rainerS

Hallo!

Erstmal herzlich [willkommenvh]

> ich habe verschiedene Messungen durchgeführt. Dabei sind
> zwei Unbekannte zu ermitteln. Ich habe 8 Messungen also 8
> Gleichungen mit 2 Unbekannten. Nun möchte ich eine
> Regression dazu durchführen mit Excel um die zwei
> Unbekannten zu ermitteln.
>  
> Die Gleichung sieht wie folgt aus:
>  A=B*x+C*y
>  A,B,C sind bekannt
>  x, y die Unbekannten.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Wie geht das und wie sieht die Therie zu solchen Problemen
> aus. Ich habe das mit der Regression nur mit einer
> Unbekannten im Web gefunden.

Regression funktioniert immer über die Methode der kleinsten Quadrate. Wenn die i-te Messung die Messwerte [mm] $A_i$, $B_i$ [/mm] und [mm] $C_i$ [/mm] liefert, dann berechnest du

[mm] (A_i-B_i*x-C_i*y)^2 [/mm] ,

summierst dies über alle Messungen:

[mm] f(x,y) = \summe_i(A_i-B_i*x-C_i*y)^2 [/mm] .

und suchst diejenigen Werte x und y, für die $f(x,y)$ minimal wird. Das bedeutet, dass die partiellen Ableitungen von f nach x bzw y Null werden müssen, also

[mm] 0 = \bruch{\partial f}{\partial x} = \summe_i 2*(A_i-B_i*x-C_i*y)*(-B_i) [/mm]

und

[mm] 0 = \bruch{\partial f}{\partial y} = \summe_i 2*(A_i-B_i*x-C_i*y)*(-C_i) [/mm] .

Den Faktor 2 kann man vor die Summe ziehen und herauskürzen; wenn du die Klammern auf den rechten Seiten ausmultiplizierst und die Summen auseinanderziehst, ergeben sich die folgenden beiden Gleichungen:

[mm] 0 = -\left(\summe_i A_i B_i\right) +x \left(\summe_i B_i^2\right) +y \left(\summe_i B_i C_i\right) [/mm] ,

[mm] 0 = -\left(\summe_i A_i C_i\right) +x \left(\summe_i B_iC_i\right) +y \left(\summe_i C_i^2\right) [/mm] .

Das ist ein lineares Gleichungssystem für x und y, denn in den einzelnen Summen stehen nur deine Messwerte; die kannst du also direkt ausrechnen.

Um nachzuweisen, dass die Lösung dieses Gleichungssystems ei Minmum der Funktion $f(x,y)$ darstellt, kannst du noch nachrechnen, dass die Matrix der zweiten Ableitungen positiv definit ist.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]