matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationRegelfunktion, Integral, etc.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Regelfunktion, Integral, etc.
Regelfunktion, Integral, etc. < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelfunktion, Integral, etc.: Kurze Frage
Status: (Frage) beantwortet Status 
Datum: 12:50 Mi 09.05.2007
Autor: peter_d

Aufgabe
Man betrachte die Funktion:
$f(x):= [mm] \left\{\begin{array}{l}\dfrac{1}{n}\text{\quad falls }x\in\mathbb{Q}\text{ mit teilerfremden Darstellung }x=\dfrac{m}{n}\\0\quad\text{sonst}\end{array}\right.$ [/mm]

Hallo.
Ich bin nun schon so weit, dass ich weiß, dass es sich um eine Regelfunktion handelt.
Nun noch zwei kurze Fragen:
1) Geh ich zu recht davon aus, dass [mm] $\int_{0}^1f(x)$ [/mm] = 0, da f an jeder Stelle x den Limes 0 hat?
2) Handelt es sich vllt sogar um eine Treppenfunktion?

Danke und Gruß
Peter

        
Bezug
Regelfunktion, Integral, etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Mi 09.05.2007
Autor: wauwau


> Man betrachte die Funktion:
>  [mm]f(x):= \left\{\begin{array}{l}\dfrac{1}{n}\text{\quad falls }x\in\mathbb{Q}\text{ mit teilerfremden Darstellung }x=\dfrac{m}{n}\\0\quad\text{sonst}\end{array}\right.[/mm]
>  
> Hallo.
>  Ich bin nun schon so weit, dass ich weiß, dass es sich um
> eine Regelfunktion handelt.
>  Nun noch zwei kurze Fragen:
>  1) Geh ich zu recht davon aus, dass [mm]\int_{0}^1f(x)[/mm] = 0, da
> f an jeder Stelle x den Limes 0 hat?

Nein, denn 1. hat f nicht an jeder Stelle den Limes x f(1/2)=1/2 und nicht null
und 2. auch eine punktweise gegen 0 konvergierende Funktionenfolge kann ein von 0 unterschiedliches Grenzintegral haben.

hat in keinem Punkt eine links oder rechtsseitigen Grenzwert - also sicher keine Regelfunktion.......

Aber das Integral ist trotzdem null, da die Menge der Punkte von von 0 verschiedenen Funktionswerten abzählbar ist und daher das Lebesgue Maß 0 hat.


>  2) Handelt es sich vllt sogar um eine Treppenfunktion?
>  
> Danke und Gruß
>  Peter


Bezug
                
Bezug
Regelfunktion, Integral, etc.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mi 09.05.2007
Autor: peter_d


> hat in keinem Punkt eine links oder rechtsseitigen Grenzwert - also sicher
> keine Regelfunktion.......

Ich seh das etwas anders, wenn ich falsch liege, bitte korriegieren:

f hat an jeder Stelle x den Grenzwert 0, denn zu [mm] $\varepsilon$>0 [/mm] gibt es nämlich nur endlich viele rationale Zahlen [mm] $\dfrac{m}{n}$ [/mm] mit [mm] $\dfrac{1}{n}>\varepsilon$ [/mm] => f ist eine Regelfunktion

?? ICh bin der Meinung, das is so richtig.

Bleibt dann noch die Frage, ob f eine Treppenfunktion ist und ob das Integral von 0 bis 1 0 ist (ohne Lebesque, den kenn ich (noch) nicht...).

Bezug
                        
Bezug
Regelfunktion, Integral, etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Mi 09.05.2007
Autor: wauwau

du hast recht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]