Reelle Zahlenfolgen und Metrik < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:47 Do 09.01.2014 | Autor: | U_Brehm |
Aufgabe | Sei $s$ die Menge aller reellen Zahlenfolgen. Für [mm] $x=(x_n)_{n \in \IN}, y=(y_n)_{n \in \IN} \in [/mm] s$ definieren wir $d(x,y):= [mm] \summe_{i=1}^{\infty}\bruch{1}{2^n}*\bruch{|x_n-y_n|}{1+|x_n-y_n|}$. [/mm] Beweisen Sie, dass $d$ eine Metrik ist. |
Die ersten beiden Eigenschaften konnte ich schon zeigen. Nur die Dreiecksungleichung bereitet mir etwas zu schaffen:
[mm] $d(x,y)+d(y,z)=\summe_{i=1}^{\infty}\bruch{1}{2^n}*\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\summe_{i=1}^{\infty}\bruch{1}{2^n}*\bruch{|y_n-z_n|}{1+|y_n-z_n|}=\summe_{i=1}^{\infty}(\bruch{1}{2^n}*\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{1}{2^n}*\bruch{|y_n-z_n|}{1+|y_n-z_n|})=\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{|y_n-z_n|}{1+|y_n-z_n|}) [/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|*(1+|y_n-z_n|)+|y_n-z_n|*(1+|x_n-y_n|)}{(1+|x_n-y_n|)*(1+|y_n-z_n|)})
[/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|+|x_n-y_n||y_n-z_n|+|y_n-z_n|+|y_n-z_n||x_n-y_n|}{(1+|x_n-y_n|)*(1+|y_n-z_n|)}) \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|+|y_n-z_n|}{(1+|x_n-y_n|)*(1+|y_n-z_n|)}) \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-z_n|}{(1+|x_n-y_n|)*(1+|y_n-z_n|)})
[/mm]
= [mm] \summe_{i=1}^{\infty}\bruch{1}{2^n}* \bruch{|x_n-z_n|}{1+|x_n-y_n|+|y_n-z_n|+|x_n-y_n||y_n-z_n|}=...=d(x,z)$
[/mm]
Dann mir jemand beim '...' helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hiho,
na offensichtlich gilt doch:
[mm] $|x_n [/mm] - [mm] y_n| [/mm] + [mm] |y_n [/mm] - [mm] z_n| [/mm] + [mm] |x_n [/mm] - [mm] y_n||y_n [/mm] - [mm] z_n| \ge |x_n [/mm] - [mm] y_n| [/mm] + [mm] |y_n [/mm] - [mm] z_n| \ge |x_n [/mm] - [mm] z_n|$
[/mm]
edit: Das bringt natürlich nix hier...... zeige stattdessen direkt per Äquivalenzumformung
[mm] $\left(\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{|y_n-z_n|}{1+|y_n-z_n|}\right) \ge \bruch{|x_n-z_n|}{1+|x_n-z_n|}$
[/mm]
Gruß,
Gono.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:53 Do 09.01.2014 | Autor: | U_Brehm |
$ [mm] $d(x,y)+d(y,z)=\summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{}\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{}\bruch{|y_n-z_n|}{1+|y_n-z_n|}=\summe_{i=1}^{\infty}(\bruch{1}{2^n}\cdot{}\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{1}{2^n}\cdot{}\bruch{|y_n-z_n|}{1+|y_n-z_n|})=\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|}{1+|x_n-y_n|}+\bruch{|y_n-z_n|}{1+|y_n-z_n|}) [/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|\cdot{}(1+|y_n-z_n|)+|y_n-z_n|\cdot{}(1+|x_n-y_n|)}{(1+|x_n-y_n|)\cdot{}(1+|y_n-z_n|)})
[/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|+|x_n-y_n||y_n-z_n|+|y_n-z_n|+|y_n-z_n||x_n-y_n|}{(1+|x_n-y_n|)\cdot{}(1+|y_n-z_n|)}) \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-y_n|+|y_n-z_n|}{(1+|x_n-y_n|)\cdot{}(1+|y_n-z_n|)}) \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}(\bruch{|x_n-z_n|}{(1+|x_n-y_n|)\cdot{}(1+|y_n-z_n|)})
[/mm]
[mm] =\summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{} \bruch{|x_n-z_n|}{1+|x_n-y_n|+|y_n-z_n|+|x_n-y_n||y_n-z_n|}
[/mm]
[mm] \ge \summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{} \bruch{|x_n-z_n|}{1+|x_n-y_n|+|y_n-z_n|}\ge \summe_{i=1}^{\infty}\bruch{1}{2^n}\cdot{} \bruch{|x_n-z_n|}{1+|x_n-x_n|}=d(x,y) \Rightarrow d(x,y)+d(y,z)\ge [/mm] d(x,z)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:00 Do 09.01.2014 | Autor: | Gonozal_IX |
Hiho,
nein, das ist falsch. Die letzte Abschätzung wäre [mm] \le [/mm] und damit nicht in die richtige Richtung.
Hab auch meine Antwort korrigiert. Du hast vorher zu stark abgeschätzt.
Gruß,
Gono.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:20 Do 09.01.2014 | Autor: | U_Brehm |
Wieso kann ich das direkt schlussfolgern?
|
|
|
|
|
Hiho,
das kannst du nicht schlußfolgern, das sollst du durch Umformungen zeigen. Forme dazu die Ungleichung so lange äquivalent um, bis etwas wahres da steht.
Gruß,
Gono.
|
|
|
|
|
Hallo,
Ich schreibe mal vereinfacht:
[mm] d(x,y):=\bruch{|x-y|}{1+|x-y|}
[/mm]
überzeuge dich davon, dass es bereits reicht, die folgende Ungleichung zu zeigen:
$d(x,z)<d(x,y)+d(y,z)$
Dir sollte auffallen, bzw. bekannt vorkommen, dass $|x-y|=:m(x,y)$ selbst auch eine Metrik darstellt. Damit arbeite ich jetzt:
[mm] d(x,z)=\frac{m(x,z)}{1+m(x,z)}=\frac{1+m(x,z)-1}{1+m(x,z)}=1-\frac{1}{1+m(x,z)}\le1-\frac{1}{1+m(x,y)+m(y,z)}
[/mm]
[mm] \le\frac{m(x,y)+m(y,z)}{1+m(x,y)+m(y,z)}=\frac{m(x,y)}{1+m(x,y)+m(y,z)}+\frac{m(y,z)}{1+m(x,y)+m(y,z)}\le\frac{m(x,y)}{1+m(x,y)}+\frac{m(y,z)}{1+m(y,z)}
[/mm]
$=d(x,y)+d(y,z)$
Wichtig: Du musst noch zeigen, dass die Reihe überhaupt konvergiert. (=> Majorantenkriterium)
|
|
|
|