matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationRect() verschiedener Periode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Fourier-Transformation" - Rect() verschiedener Periode
Rect() verschiedener Periode < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rect() verschiedener Periode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:50 Do 31.03.2016
Autor: elektroalgebra93

Aufgabe
s= si(pi*t) * si(pi*t/2)

N'abend,

Es geht drum S im Frequenzbereich zu skizzieren.
Im Zeitbereich:
s1 geht von -1 bis 1
s2 geht von -2 bis 2  (wird ja gedehnt)

Im Frequenzbereich:
s1 können wir ja transformieren, da kommt ein rect raus, mit den Grenzen von -0,5 bis 0,5

s2 können wir ja transformieren, da kommt auch ein rect raus, mit den Grenzen von -1/4 bis 1/4

So und da wir jetzt im Frequenzbereich sind, werden S1 und S2 miteinander gefaltet.
Da bekomme ich ein Dreieck raus, mit den Grenzen : -3/4 bis 3/4
Ist das richtig ?

Noch eine Frage:
Wenn ich das ganze jetzt mit dem Faltungsintegral bestimmen will, dann müsste ich doch folgendermassen vorgehen? :

(Für die linke Seite vom dreieck, quasi nur die Steigung):
[mm] \integral_{-\infty}^{\infty} [/mm] {rect(t) * [mm] rect(\bruch{t}{2}-tau) [/mm] dtau}
//grenzen einsetzen
[mm] \integral_{-1/2}^{t+1/2}{1 * (\bruch{1}{2}*tau) dtau} [/mm]

Danke


        
Bezug
Rect() verschiedener Periode: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Fr 01.04.2016
Autor: Infinit

Hallo elektroalgebra93,
die Grenzen hast Du richtig berechnest, da beide Rechtecke jedoch unterschiedlich lang sind, kommt da kein Dreieck raus bei der Faltung, sondern ein Trapez. Du kannst das kleine Rechteck für den t-Bereich zwischen-1/4 und +1/4 unter dem großen Rechteck durchschieben, ohne dass sich an der Multiplikation beider Funktionen etwas ändert. Das Produkt ist in diesem Bereich immer gleich 1.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]