matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenRechnen mit komplexen Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "komplexe Zahlen" - Rechnen mit komplexen Zahlen
Rechnen mit komplexen Zahlen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen mit komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:21 So 27.03.2011
Autor: Kueken

Hallo,

ich bin grad mit Umformen und Zeichnen beschäftigt. Ich hab hier folgende komplexe Zahl, die ich zeichnen und in polardarstellung bringen soll. Aber zeichnen und polardarstellung sollte eigentlich kein Problem sein. Bei der Umformung hapert es allerdings, weil ich nicht mehr weiß wie ich auf einen Wert gekommen bin. So los gehts:

z= [mm] \bruch{(1-i)^{3}}{(1+i)^{5}} [/mm] = [mm] \bruch{(1-i)^{8}}{2^{5}} [/mm] und jetzt kommt der schritt, den ich nicht mehr nachvollziehen kann = [mm] \bruch{(-2i)^{4}}{32} [/mm] Es hängt hier nur am Zähler. Was ist da passiert? Ich meine mit dem PAscalschen Dreieck wirds wohl etwas länglich. Also hab ich da irgendnen Trick schon wieder vergessen. Wäre toll wenn einer weiß was ich hier gebaut habe :)

Viele Grüße und Danke schonmal
Kerstin

        
Bezug
Rechnen mit komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:45 So 27.03.2011
Autor: kushkush

Hallo

den Zähler kannst du in der Polarform schreiben und potenzieren, dann kommt man schnell auf dein Ergebnis.



Gruss

kushkush

Bezug
        
Bezug
Rechnen mit komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:19 So 27.03.2011
Autor: Al-Chwarizmi


> Hallo,
>  
> ich bin grad mit Umformen und Zeichnen beschäftigt. Ich
> hab hier folgende komplexe Zahl, die ich zeichnen und in
> polardarstellung bringen soll. Aber zeichnen und
> polardarstellung sollte eigentlich kein Problem sein. Bei
> der Umformung hapert es allerdings, weil ich nicht mehr
> weiß wie ich auf einen Wert gekommen bin. So los gehts:
>  
> z= [mm]\bruch{(1-i)^{3}}{(1+i)^{5}}[/mm] = [mm]\bruch{(1-i)^{8}}{2^{5}}[/mm]
> und jetzt kommt der schritt, den ich nicht mehr
> nachvollziehen kann = [mm]\bruch{(-2i)^{4}}{32}[/mm] Es hängt hier
> nur am Zähler. Was ist da passiert? Ich meine mit dem
> PAscalschen Dreieck wirds wohl etwas länglich. Also hab
> ich da irgendnen Trick schon wieder vergessen. Wäre toll
> wenn einer weiß was ich hier gebaut habe :)
>  
> Viele Grüße und Danke schonmal
>  Kerstin


Guten Tag !

      $\ [mm] (1-i)^8\ [/mm] =\ [mm] \left((1-i)^2\right)^4$ [/mm]

Nun [mm] (1-i)^2 [/mm] ausrechnen (wie auch immer, rechtw. oder polar).

LG
Al-Chw.


Bezug
                
Bezug
Rechnen mit komplexen Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 So 27.03.2011
Autor: Kueken

ui, das tut ja schon fast weh :D

Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]