matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeRechnen mit einer Matrixnorm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Numerik linearer Gleichungssysteme" - Rechnen mit einer Matrixnorm
Rechnen mit einer Matrixnorm < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen mit einer Matrixnorm: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:23 Sa 23.05.2009
Autor: DerGraf

Aufgabe
Sei A eine mxn-Matrix, die Vektoren aus dem [mm] \IR^n [/mm] in den [mm] \IR^m [/mm] abblidet. Um Abschätzungen vornehmen zu können, sollen im Urbild  die 1-Norm und im Bildraum die [mm] \infty-Norm [/mm] verwendet werden.
Es wird festgelegt:

[mm] \parallel [/mm] A [mm] \parallel_{*}:=max\{\parallel Ax \parallel_{\infty} : \parallel x \parallel_{1}=1\}. [/mm]

a) Wie kann der Wert [mm] \parallel [/mm] A [mm] \parallel_{*} [/mm] berechnet werden?
b) Ist durch [mm] \parallel [/mm] A [mm] \parallel_{*}:=max\{\parallel Ax \parallel_{\infty} : \parallel x \parallel_{1}=1\} [/mm] eine Matrixnorm definiert?
c) Gilt [mm] \parallel [/mm] AB [mm] \parallel_{*} \le \parallel [/mm] A [mm] \parallel_{*}\parallel [/mm] B [mm] \parallel_{*}? [/mm]
d) Bestimme [mm] \parallel [/mm] A [mm] \parallel_{*} [/mm] für [mm] \pmat{ 1 & 2 \\ 3 & 4 }. [/mm]

Hallo erstmal,

ich kommt mit der Aufgabe einfach nicht klar.

zu a) Wie bestimme ich denn dieses Maximum? Hier klappt einfach ableiten und Maximum ausrechnen nicht ganz (schon alleine wegen der Linearität ist die 2. Ableitung immer 0).
Eine andere Methode ist mir leider nicht bekannt.

zu b) Schon bei der Definitheit wird es durch das Max nicht gerade einfach durch Umformungen nachzuweisen, dass A 0 sein muss. Ich bräuchte vermutlich erstmal a) dafür.

Bei c) und d) bräuchte ich ebenfalls a).

Wie bekomme ich also [mm] \parallel [/mm] A [mm] \parallel_{*} [/mm] berechnet?
Bin hier echt am verzweifeln und für jede Hilfe dankbar!

Gruß
DerGraf

        
Bezug
Rechnen mit einer Matrixnorm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 27.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]