matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikRechenregeln für Konvergenzbeg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Rechenregeln für Konvergenzbeg
Rechenregeln für Konvergenzbeg < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenregeln für Konvergenzbeg: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:18 Mi 16.12.2009
Autor: Peon

Aufgabe
Seien [mm] (X_n)_{n\in \IN}, [/mm] X bzw. [mm] (Y_n)_{n\in \IN}, [/mm] Y reelle ZV auf [mm] (\Omega, \mathcal{A}, [/mm] P) und a [mm] \in \IR [/mm] konstant. Beweisen Sie die folgenden Aussagen:
[mm] X_n \to [/mm] X (konvergent nach Verteilung, D), (n [mm] \to \infty) [/mm] und [mm] Y_n \to [/mm] a (stochastisch, P), (n [mm] \to \infty) [/mm]
=> a) [mm] X_n+Y_n \to [/mm] (D) X+a (n [mm] \to \infty) [/mm]
b) [mm] X_nY_n \to [/mm] (D) aX (n [mm] \to \infty) [/mm] (a>0).

Hallo,

es wäre super wenn mir jemand einen Denkanstoß geben könnte, ich habe grad keine Ahnung, wie ich das zeigen kann.

Danke

        
Bezug
Rechenregeln für Konvergenzbeg: Tipp aus dem Tutorium
Status: (Frage) überfällig Status 
Datum: 21:17 Mi 16.12.2009
Autor: MiguelVal

Tipp aus dem Tutorium:
"Hifreich ist die Beweistechnik von Bemerkung 6.1.a)"

Wir sind im Tutorium den Beweis zu Bemerkung 6.1.a) nochmals durchgegangen. Dabei sollte ja gezeigt werden, dass aus der stochastischen Konvergenz (nach wahrscheinlichkeit) die  Konvergenz nach Verteilung ( schwach) folgt. Dabei wurde Fn (z) zunächst nach oben abgeschätzt mit dem limsup und anschließend nach unten mit liminf. Es stellte sich dann heraus, dass die beiden gleich F(z) sind und somit gilt Fn(z)= F(z) [mm] (n\to\infty) [/mm]

bei der Aufgabe hier nun ist es mir gelungen Fn(z):=P(Xn+Yn [mm] \le [/mm] z) nach oben letztlich gegen P(X+a [mm] \le [/mm] z) =  F(z) abzuschätzen.
Aber bei der Abschätzung nach unten harperts es bei mir noch. Ich schaffe es nicht eine Ungleichung mit P(Xn+Yn [mm] \le [/mm] z) [mm] \ge [/mm] irgendetwas zu konstruieren...
evtl. kann mir jemand helfen?

Grüße und danke im Voraus

Bezug
                
Bezug
Rechenregeln für Konvergenzbeg: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:21 Do 17.12.2009
Autor: Bibijana

Ist wahrscheinlich eine total blöde Frage, aber ich verstehe nicht warum das nicht geht
[mm] Y_{n}\to(stochastisch [/mm] (P))a [mm] \Rightarrow Y_{n}\to [/mm] (nach Verteilung(D))a
Also:
[mm] \limes_{n\rightarrow\infty} (X_{n}+Y_{n})=\limes_{n\rightarrow\infty}X_{n}+\limes_{n\rightarrow\infty}Y_{n}=X_{n}+a [/mm]

Bezug
                        
Bezug
Rechenregeln für Konvergenzbeg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Sa 19.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Rechenregeln für Konvergenzbeg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 21.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Rechenregeln für Konvergenzbeg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 21.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]