matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenReal- und Imaginärteil
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Real- und Imaginärteil
Real- und Imaginärteil < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Real- und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 Mi 11.02.2009
Autor: heinrich01

Aufgabe
Bestimmen Sie Real- und Imaginärteil der komplexen Zahl:

z := [mm] \bruch{e^{i\pi}}{1 + i} [/mm]

Die Lösung und auch den Lösungsweg habe ich hier. Nur ist meine Frage, warum [mm] e^{i\pi} [/mm] = -1 ist. Das ist der Punkt an dem es bei mir hängt und woran ich auch schon ein Weilchen grübel. Der Rest ist ja nicht weiter schwer.

        
Bezug
Real- und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Mi 11.02.2009
Autor: schachuzipus

Hallo heinrich01,

> Bestimmen Sie Real- und Imaginärteil der komplexen Zahl:
>  
> z := [mm]\bruch{e^{i\pi}}{1 + i}[/mm]
>  Die Lösung und auch den
> Lösungsweg habe ich hier. Nur ist meine Frage, warum
> [mm]e^{i\pi}[/mm] = -1 ist. Das ist der Punkt an dem es bei mir
> hängt und woran ich auch schon ein Weilchen grübel. Der
> Rest ist ja nicht weiter schwer.

Schreibe [mm] $e^{\pi i}$ [/mm] um in die trigonometrische Darstellung:

[mm] $e^{\pi i}=\cos(\pi)+i\cdot{}\sin(\pi)=-1+0\cdot{}i=-1$ [/mm]


LG

schachuzipus

Bezug
        
Bezug
Real- und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 Mi 11.02.2009
Autor: prfk

Nur zur Ergänzung für alle dich sich das Ganze etwas bildlicher vorstellen mögen.

Man nehme sich ein Koordinatensystem mit Real- und Imaginärachse und zeichne dort einen Zeiger der Länge 1 auf der Realachse ein. Diesen Zeiger dreht man jetzt um den Winkel [mm] \pi, [/mm] also 180°. Dann zeigt er genau in die entgegengesetzte Richtung, und hat daher den Wert -1.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]