matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesRaumkurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Raumkurve
Raumkurve < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Raumkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Mo 22.11.2010
Autor: Kuriger

Hallo

Gilt eigentlich bei einer Raumkurve nicht generell, dass r(t) (Oortsvektor) orhogonal auf dem Vektor v(t) (geschwindigkeitsvektor steht? Gilt das nur, wenn die Raumkurve einen konstanten Abstand zum Ursprung ist, also sphörisch ist?
Denn bei einer planaren, ebenen Kurve gilt ja diese Beziehung immer

Danke, gruss Kuriger

        
Bezug
Raumkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Mo 22.11.2010
Autor: M.Rex

Hallo

Das kannst du doch selber relativ schnell prüfen.

Bilde mal (ganz allgemein) das Skalarprodukt der Vektoren [mm] \vec{r_{t}} [/mm] und [mm] \vec{v_{t}} [/mm]

Ist dieses =0 (und zwar immer), sind die beiden Vektoren sekrecht aufeinander.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]