matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRangberechnung mit Parametern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Rangberechnung mit Parametern
Rangberechnung mit Parametern < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rangberechnung mit Parametern: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:35 Mi 24.01.2007
Autor: DieSuse

Aufgabe
Führen Sie eine Ranguntersuchung durch und bestimmen Sie diejenigen Parameterwerte
a, b E R, für die das folgende lineare Gleichungssystem
a) eindeutig lösbar b) mehrdeutig lösbar und c) unlösbar ist !
d) Geben Sie im Fall b) die Lösung vektoriell an !


x   + y     + z     =1
2x + y     + z     =-1
4x + 12y + a*z = b


habe versucht den Rang zu bestimmen...bleibe aber hängen bei...

[mm] \pmat{ 1 & 1 & 1 & 1\\ 0 & 1 & -1 & -3\\ 0 & 8 & -4+a & -4+b } [/mm]

aber wie nun weiter? oder bin ich schon auf dem falschen weg?

        
Bezug
Rangberechnung mit Parametern: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mi 24.01.2007
Autor: schachuzipus


> Führen Sie eine Ranguntersuchung durch und bestimmen Sie
> diejenigen Parameterwerte
>  a, b E R, für die das folgende lineare Gleichungssystem
>  a) eindeutig lösbar b) mehrdeutig lösbar und c) unlösbar
> ist !
>  d) Geben Sie im Fall b) die Lösung vektoriell an !
>  
>
> x   + y     + z     =1
>  2x + y     + z     =-1
>  4x + 12y + a*z = b
>  
> habe versucht den Rang zu bestimmen...bleibe aber hängen
> bei...
>  
> [mm]\pmat{ 1 & 1 & 1 & 1\\ 0 & 1 & -1 & -3\\ 0 & 8 & -4+a & -4+b }[/mm]
>  
> aber wie nun weiter? oder bin ich schon auf dem falschen
> weg?


Hallo

hier hat sich ein kleiner VZ-Fehler eingeschlichen

[mm] \pmat{ 1 & 1 & 1 & |&1\\ 0 & -1 & -1 &|& -3\\ 0 & 8 & -4+a & |&-4+b } [/mm]

Nun kannst du weiter umformen, zB. das 8-fache der 2ten Zeile zur 3ten Zeile addieren usw.

Erlaubt sind hierbei drei Arten von elementaren Zeilenumformungen:

1) Vertauschen von zwei Zeilen

2) Addieren eines Vielfachen (auch 0-fachen!) einer Zeile zu einer anderen

3) Multiplikation einer Zeile mit einer Zahl (einem Skalar) [mm] \ne [/mm] 0

Wenn du die Matrix noch weiter vereinfacht hast (durch Eliminieren der Einträge [mm] a_{31} [/mm] und [mm] a_{32}), [/mm] musst du Fallunterscheidungen für a,b machen.
Davon hängen dann Rang und Lösbarkeit des gesuchten LGS ab.


Gruß


schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]