Rang einer Teilmatrix A' < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:19 Mi 04.05.2005 | Autor: | Speyer |
hi !!
A' = (aij | 1 [mm] \le [/mm] i [mm] \le [/mm] m, 1 [mm] \le [/mm] j [mm] \le [/mm] k < n) sei Teilmatrix von
A = (aij | 1 [mm] \le [/mm] i [mm] \le [/mm] m, 1 [mm] \le [/mm] j [mm] \le [/mm] n), wobei aij [mm] \in [/mm] K.
Zu zeigen:
RgA [mm] \le [/mm] RgA' + n - k
-------------------------------------------------------------------------
mittlerweile bin ich soweit, dass ich denke, dass A' halt eine erweiterte Koeffizienten-Matrix sein muß, weil es sonst ja keine Möglichkeit gibt, oder ? Die erw.Koeff.Matrix kann ja aber höchstens RgA+1 haben...
Aber wie kann ich das mathematisch zeigen ???
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:51 Fr 06.05.2005 | Autor: | taura |
Hi Tobias!
Also, dein A' ist eine m,k-Matrix, die entsteht wenn man die letzten n-k Spalten von A (wobei A eine m,n-Matrix ist) weglässt. Das heißt, A hat in den ersten k Spalten die gleichen Einträge, wie A', also hat A auf jedenfall schonmal mindestens gleichen Rang wie A'. So, jetzt hat A aber noch n-k Spalten mehr, die im schlimmsten Fall alle linear unabhängig sind. Das heißt, zu deinem bisherigen Spaltenraum kommen noch maximal weitere n-k linear unabh. Elemente dazu. Die Dimension des Spaltenraumes vergrößert sich also um maximal n-k. Und da für Matrizen gilt: Rang=Zeilenrang=Spaltenrang, kannst du dann automatisch schließen, dass auch der Rang von A sich im Vergleich zu Rang A' um maximal n-k vergrößert. Womit deine Ungleichung bewiesen wäre.
Hoffe, ich konnte dir weiterhelfen, wenn nicht frag einfach nochmal nach!
|
|
|
|