Rang einer MAtrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei K ein Körper und sei A [mm] \in K^{n,n} [/mm] eine invertierbare Matrix. Seien B [mm] \in K^{n,p}, [/mm] C [mm] \in K^{m,n}, [/mm] D [mm] \in K^{m,p} [/mm] weitere MAtrizen, so dass
[mm] Rang(\pmat{ A & B \\ C & D }) [/mm] = Rang(A)= n.
Beweisen sie, dass D = [mm] C*A^{-1}*B [/mm] |
Hallo,
ich bin an diese Aufgabe folgender maßen rangegangen:
Aus [mm] Rang(\pmat{ A & B \\ C & D }) [/mm] = Rang(A) folgt doch, dass der Rang nicht vollständig ist und daraus folgt, dass [mm] det((\pmat{ A & B \\ C & D })) [/mm] = 0.
[mm] \Rightarrow [/mm] AD = BC [mm] \Rightarrow [/mm] D= [mm] A^{-1}BC.
[/mm]
ist diese Argumentation bis hierher richtig? meiner meinung nach müsste es doch stimmen, aber irgendwie komme ich nicht auf D = [mm] C*A^{-1}*B, [/mm] was ja eigentlich zu beweisen ist... also müsste da ja doch irgendein fehler sein?
(oder ist D = [mm] C*A^{-1}*B [/mm] mit D= [mm] A^{-1}BC [/mm] doch äquivalent?? )
hoffe mir kann jemand helfen.
MFG
Nathenatiker
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:18 So 29.04.2007 | Autor: | felixf |
Hallo Nathenatiker!
> Sei K ein Körper und sei A [mm]\in K^{n,n}[/mm] eine invertierbare
> Matrix. Seien B [mm]\in K^{n,p},[/mm] C [mm]\in K^{m,n},[/mm] D [mm]\in K^{m,p}[/mm]
> weitere MAtrizen, so dass
> [mm]Rang(\pmat{ A & B \\ C & D })[/mm] = Rang(A)= n.
> Beweisen sie, dass D = [mm]C*A^{-1}*B[/mm]
> Hallo,
>
> ich bin an diese Aufgabe folgender maßen rangegangen:
> Aus [mm]Rang(\pmat{ A & B \\ C & D })[/mm] = Rang(A) folgt doch,
> dass der Rang nicht vollständig ist und daraus folgt, dass
> [mm]det((\pmat{ A & B \\ C & D }))[/mm] = 0.
Soweit ist das OK.
> [mm]\Rightarrow[/mm] AD = BC [mm]\Rightarrow[/mm] D= [mm]A^{-1}BC.[/mm]
> ist diese Argumentation bis hierher richtig?
Nein: schliesslich ist $A D - B C$ nicht die Determinante der Matrix [mm] $\pmat{ A & B \\ C & D }$ [/mm] (die Determinante ist ein Skalar und keine Matrix). Ausserdem macht das Produkt schon keinen Sinn, da du Matrizen miteinander multiplizierst die nicht miteinander multipliziert werden koennen.
Du musst anders vorgehen.
Du weisst, dass die Matrix [mm] $\pmat{ A & B \\ C & D }$ [/mm] Rang $n$ hat, und dass die Matrix $A$ Rang $n$ hat. Damit gibt es eine invertierbare Matrix [mm] $M_1 \in \Gl_{m+n}(\IK)$ [/mm] der Form [mm] $M_1 [/mm] = [mm] \pmat{ E_n & 0 \\ * & E_m }$ [/mm] so, dass [mm] $M_1 \pmat{ A & B \\ C & D } [/mm] = [mm] \pmat{ A & B \\ 0 & \tilde{D} }$ [/mm] ist (du kannst mit den Zeilen von $A$ die Matrix $C$ ausloeschen). Ueberleg dir mal, wie $*$ aussehen muss; das kannst du ganz konkret angeben.
Jetzt schau dir diese neue Matrix [mm] $\pmat{ A & B \\ 0 & \tilde{D} }$ [/mm] an; sie hat Rang $n$. Da $A$ ebenfalls Rang $n$ hat heisst das aber, dass [mm] $\tilde{D} [/mm] = 0$ sein muss. Wenn du jetzt $*$ kennst, kannst du somit [mm] $\tilde{D}$ [/mm] hinschreiben, und die Gleichung [mm] $\tilde{D} [/mm] = 0$ liefert dir deine Gleichheit.
LG Felix
|
|
|
|