matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikRandvrtlg. - Austauschbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Randvrtlg. - Austauschbarkeit
Randvrtlg. - Austauschbarkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randvrtlg. - Austauschbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:27 Mo 13.03.2006
Autor: ivo82

Aufgabe
Zeige dass gilt:
[mm] \integral_{0}^{1}{p^{t}*(1-p)^{k-t} dp} [/mm] = (t! * (k-t)!) / (k+1)!

Das Beispiel ist eigentlich länger werde es jetzt noch einmal kurz zusammenfassen: [mm] X_{i}|P [/mm] ist i.i.d. Bernoulli verteilt mit Parameter P, wobei P die Realisation einer zw. 0 und 1 gleichverteilten Zufallsvariable ist. Zu zeigen ist dann, dass für jede Zahl k die Randverteilung also [mm] P(X_{1}=x_{1},...,X_{k}=x_{k}) [/mm] gleich dem Integral bzw. dem Bruch mit den Fakultäten ist.
t ist dabei gegeben als  [mm] \summe_{i=1}^{k}x_{i}, [/mm] sprich t ist die Anzahl jener X die den Wert 1 annehmen und liegt zwischen 0 und k. Außerdem steht da noch der ominöse Satz: Die X sind also austauschbar.

Recht weit bin ich selber nicht gekommen, ich meine mir ist klar, dass wegen der Gleichverteilung von P die gemeinsame Dichte der k verschiedenen X und P gleich dem Produkt der einzelnen bedingten Dichten ist und nach P zwischen 0 und 1 integriert werden muss um auf die Randverteilung zu kommen, der Ausdruck im Integral leuchtet mir auch ein, aber wie komme ich auf die Fakultäten?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hoffentlich kann mir wer helfen, vielen Dank jedenfalls im Voraus!

        
Bezug
Randvrtlg. - Austauschbarkeit: Beta
Status: (Antwort) fertig Status 
Datum: 11:00 Mo 13.03.2006
Autor: danielinteractive

Hallo ivo,

Kennst du die Betafunktion? Für dieses Integral brauchst du sie nämlich.
Definiert ist
[mm]B(a,b)=\int_0^1 x^{a-1} (1-x)^{b-1} dx[/mm]
Dieses Integral ist für alle [mm]a,b \in \IR^+[/mm] konvergent.
Außerdem brauchst du die Umformung
[mm]B(a,b)=\bruch{\Gamma(a)*\Gamma(b)}{\Gamma(a+b)}[/mm]
und noch eine:
[mm]\Gamma(a)=(a-1)![/mm] für [mm]a\in \IN[/mm].
Kommst du damit weiter?

mfg
Daniel

Bezug
                
Bezug
Randvrtlg. - Austauschbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Mo 13.03.2006
Autor: ivo82

Danke!
Das erklärt Einiges, hätte eigentlich selbst draufkommen müssen, aber konnte mir diese blöde Betaverteilung noch nie merken!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]