RSA-Verschl. + Digit. Sign. < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 12:08 Sa 29.01.2011 | Autor: | RalU |
Aufgabe | gegeben: Öffentlicher RSA-Schlüssel (e=5, n=21) und private Schlüssel (d=17)
a) Zahl 5 soll vor Übertragung mit dem öffentlichen Schlüssel verschlüssel werden. Wie lautet das Ergebnis?
b)Der Empfängere erhält die mit dem öffentlichen Schlüssel verschlüsselte Zahl 11. Wie lautet die ursprüngliche Nachricht=
c) Der Empfänger erhält eine Nachricht mit der Zahl "3", die zusätzlich mit der digitalen Signatur des Absender ausgestattet wurde. Die Signatur lautet "12". Kommt die Nachricht vom richtigen Absender?
d)Der Empfänger erhält eine Nachricht mit der Zahl "4" und der Signatur "15". Wie sieht es nun mit der Authentiziät und Integrität aus?
e) Angenommen, der Empfänger kennt den privaten Schlüssel nicht und er will ihn ermitteln um alle Nachrichten mitzuhören. Dazu benötigt er die Primzahlen p und q, die durch Zerlegung von Modul n gewonnen werden können.
Wie lauten diese Primzahlen? |
zu a)
P=5, also ist die Verschlüsselung:
[mm] C=P^{e} [/mm] mod 21
= [mm] 5^{5} [/mm] mod 21
[mm] \equiv 5^{2} [/mm] * [mm] 5^{2} [/mm] * 5 mod 21
[mm] \equiv [/mm] 16 * 5 mod 21 [mm] \equiv [/mm] 17
zu b)
C=11, also entschlüsseln:
[mm] C=P^{d} [/mm] mod 21
[mm] =11^{17} [/mm] mod 21
[mm] \equiv 11^{2} [/mm] * [mm] 11^{2} [/mm] * .... * 11 mod 21
[mm] \equiv [/mm] 121 * 121 * ... * 11 mod 21
[mm] \equiv [/mm] 256 * 256 * 256 * 256 * 11 mod 21
[mm] \equiv [/mm] 4 * 4 * 4 * 4 * 11 mod 21
[mm] \equiv [/mm] 16 * 16 * 11 mod 21
[mm] \equiv [/mm] 256 * 11 mod 21
[mm] \equiv [/mm] 44 mod 21 [mm] \equiv [/mm] 2
zu c) Sig = 12, C=3, e=5, n = 21
Berechnung [mm] C^{e} [/mm] mod n und Vergleich mit Signatur (12)
[mm] C^{e} [/mm] mod n
[mm] \equiv 3^{5} [/mm] mod 21
[mm] \equiv 3^{3} [/mm] * 3^^{2} mod 21
[mm] \equiv [/mm] 27 * 9 mod 21
[mm] \equiv [/mm] 243 mod 21
[mm] \equiv [/mm] 12
-> Stimmt mit Sig (12) überein. Nachricht kann als authentisch und integer angesehen werden.
zu d)
Vorgehen wie in c)
[mm] 4^{3} [/mm] mod 21
[mm] \equiv [/mm] 64 mod 21
[mm] \equiv [/mm] 1
1 entspricht nicht der Signatur (15). Nachricht kann nicht als authentisch und integer angesehen werden.
zu e)
es gilt doch
p * q mod [mm] \phi(n) [/mm] = 1
P * q mod 12 = 1
Wie gehts nun weiter???
Danke für Eure Hilfe,
Ralf
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:21 Mo 31.01.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|