matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieR-Integral <=> Klasse L+
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - R-Integral <=> Klasse L+
R-Integral <=> Klasse L+ < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-Integral <=> Klasse L+: Beweis
Status: (Frage) überfällig Status 
Datum: 11:14 So 18.04.2010
Autor: babapapa

Aufgabe
Jede Riemann-integrierbare Funktion f auf [a,b] gehört zur Klasse L+.

Hallo!

Ich habe folgenden Beweis im Skriptum, den ich aber nicht ganz verstehe (eventuell hat sich bei mir ein Fehler eingeschlichen)

Ich habe nun eine Funktion f : [a,b] [mm] \mapsto \IR [/mm]
mit einer von mir gewählten Partition [mm] P_n [/mm] := [mm] \{a = x_0 < x_1 < \ldots < x_{2^n} = b \} [/mm]
Meine offenen Intervalle sind äquidistant: [mm] I_k [/mm] := ( [mm] x_{k-1}, x_k [/mm] ) wobei [mm] x_k [/mm] - [mm] x_{k-1} [/mm] = [mm] \bruch{b-a}{2^n} [/mm]
und [mm] m_k [/mm] := [mm] \inf_{I_k} [/mm] f


[mm] \chi_{I_k}(x)= \left\{\begin{matrix} 1, & \mbox{wenn }x \in I_k \\ 0, & \mbox{sonst} \end{matrix}\right. [/mm]

[mm] \varphi_n [/mm]  (x) = [mm] \summe_{k=1}^{n} \chi_{I_k}(x) [/mm]

[mm] \integral_{a}^{b}{\varphi_{n}(x) dx} [/mm] = [mm] \integral_{a}^{b}{\summe_{k=1}^{n} \chi_{I_k}(x) dx} [/mm] =
weil Treppenfunktion - man darf Summe mit Integral vertauschen
= [mm] \summe_{k=1}^{n} \integral_{a}^{b}{\chi_{I_k}(x) dx} [/mm] =
genau den folgenden Schritt verstehe ich nicht: warum ergibt dies nun genau die Summe der Beträge der Intervalllängen und warum ist dies nun [mm] \le [/mm] 1?
= [mm] \summe_{k=1}^{n} |I_k [/mm] | [mm] \le [/mm] 1
Bisher habe ich nicht verstanden was beweisen wurde


nun der Beweis geht weiter...

[mm] \varphi_n [/mm]  (x) = [mm] \summe_{k=1}^{2^n} m_k [/mm] * [mm] \chi_{I_k}(x) [/mm]
das sieht für mich nun richtiger aus als das obige, da die Treppenfunktion auch so definiert ist.

Sei nun [mm] \varphi_n [/mm] eine austeigende Folge von Treppenfunktionen
[mm] (\varphi_n \uparrow) [/mm]

[mm] \integral_{a}^{b}{\varphi_{n}(x) dx} [/mm] = [mm] \underline{S}_P [/mm] (f)
wie komme ich zu dieser Folgerung? Das Integral ist die untere Riemansumme über die Partition ...?

[mm] \integral_{a}^{b}{\varphi_{n}(x) dx} [/mm] = [mm] \underline{S}_P [/mm] (f) [mm] \to_{n\rightarrow\infty} [/mm] R- [mm] \integral_{\bar{a}}^{b}{f(x) dx} [/mm] = R- [mm] \integral_{a}^{b}{f(x) dx} [/mm]
gut da RiemannIntegrale bei "Ober-" und "Unter-Integral" den selben Wert haben gilt Gleichheit. Aber warum lässt sich das so leicht hinschreiben?


Weiter im Beweis:
noch zu zeigen, dass [mm] \varphi_n \uparrow [/mm] f fast überall auf [a,b]

/Lebesgue Kriterium => Menge der Unstetigen Stellen von f ist Nullmenge /

[mm] \xi \in [/mm] [a,b], f stetig in [mm] \xi [/mm] := [mm] \forall \epsilon \exists \delta_\epsilon \forall [/mm] x [mm] \in U_{\delta_\epsilon}(\xi) [/mm] :
[mm] f(\xi) [/mm] - [mm] \epsilon [/mm] < f(x) < [mm] f(\xi) [/mm] + [mm] \epsilon [/mm]
gut, hier handelt es sich um die epsilon-delta umgebung für stetigkeit

Wähle n so, dass [mm] \xi \in I_k \in U_{\delta_\epsilon}(\xi) [/mm] =>
[mm] \forall [/mm] x [mm] \in I_k [/mm] : [mm] f(\xi) [/mm] - [mm] \epsilon [/mm] < f(x) < [mm] f(\xi) [/mm] + [mm] \epsilon [/mm]

Somit gilt auch:

[mm] f(\xi) [/mm] - [mm] \epsilon \le \varphi_{n} (\xi) [/mm] < [mm] f(\xi) [/mm] + [mm] \epsilon [/mm]
wegen Infimum eventuell auch [mm] \le [/mm]


[mm] \varphi_n \uparrow [/mm] => [mm] \forall [/mm] m [mm] \ge [/mm] n : [mm] \varphi_{n} (\xi) \le \varphi_{m} (\xi) \le f(\xi) [/mm] =>
[mm] f(\xi) [/mm] - [mm] \epsilon \le \varphi_{m} (\xi) [/mm] < [mm] f(\xi) [/mm] + [mm] \epsilon [/mm] für alle m [mm] \ge [/mm] n

/ dh [mm] \varphi_{n} (\xi) \to f(\xi) [/mm] für n [mm] \to \infty [/mm] /

=> f [mm] \in L^{+}, \integral_{a}^{b}{f(x) dx} [/mm] bez. [mm] L^{+} [/mm] ist ident mit [mm] R-\integral_{a}^{b}{f(x) dx} [/mm]
[mm] \Box [/mm]

Nun der letzte Teil des Beweises ist mir nicht so rätselhaft, aber zu der letzten Folgerung komme ich einfach nicht, da ich nicht weiß ob alles im angegeben Beweis stimmt und da ich einige Folgerungen nicht nachvollziehen kann.

Vielen Dank für jeden Input.

lg
Baba

        
Bezug
R-Integral <=> Klasse L+: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Mi 21.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]