matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraQuotientenvektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Quotientenvektorraum
Quotientenvektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenvektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Sa 06.05.2006
Autor: Riley

schönen guten nachmittag!

hab grad einen interessanten satz gefunden:
"Man nennt V/U den Quotientenvektorraum von V nach U. Diese Bezeichnung entspricht der Vorstellung, dass man U aus V 'herausdividiert', weil U in V/U zur Null wird."

Warum wird U in V/U zur Null?

gruß riley :)

        
Bezug
Quotientenvektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Sa 06.05.2006
Autor: felixf

Hallo Riley!

> hab grad einen interessanten satz gefunden:
>  "Man nennt V/U den Quotientenvektorraum von V nach U.
> Diese Bezeichnung entspricht der Vorstellung, dass man U
> aus V 'herausdividiert', weil U in V/U zur Null wird."
>  
> Warum wird U in V/U zur Null?

Na weil das so definiert ist :-) Ein Element $v+U [mm] \in [/mm] V/U$ (mit $v [mm] \in [/mm] V$) ist genau dann gleich [mm] $0_{V/U} [/mm] = 0 + U = U$, wenn $v [mm] \in [/mm] U$ ist, also wenn $v + U = U = 0 + U$ ist!

LG Felix


Bezug
                
Bezug
Quotientenvektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Sa 06.05.2006
Autor: Riley

hi felix!
danke für deine erklärung... ist das alles kompliziert!
d.h. U ist der "Nullvektor" von V/U?
kann man das auch so sagen dass wenn  x aus U :
x - 0 (soll Nullvektor sein) = x
x ist aus U, d. h. 0~x
d.h. [x]=[0]
und damit ist der "Nullvektor" des neuen Raums die Äquivalenzklasse des Nullvektors von V und das ist gerade U ?

viele grüße
riley :)

Bezug
                        
Bezug
Quotientenvektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Sa 06.05.2006
Autor: felixf

Hallo Riley!

>  danke für deine erklärung... ist das alles kompliziert!
>  d.h. U ist der "Nullvektor" von V/U?
>   kann man das auch so sagen dass wenn  x aus U :
>  x - 0 (soll Nullvektor sein) = x
> x ist aus U, d. h. 0~x
> d.h. [x]=[0]
>  und damit ist der "Nullvektor" des neuen Raums die
> Äquivalenzklasse des Nullvektors von V und das ist gerade U?

Genau so ist es!

LG Felix


Bezug
                                
Bezug
Quotientenvektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Sa 06.05.2006
Autor: Riley

oh wow, cool. vielen dank für deine hilfe!

gruß riley :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]