matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenQuotientenregel verwenden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Quotientenregel verwenden
Quotientenregel verwenden < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenregel verwenden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Fr 11.06.2010
Autor: egal

Aufgabe
[mm] \bruch{f(x,y,z)}{x}=-\bruch{2x}{x^2+y^2+z^2+1} [/mm]

Hallo,

raus habe ich folgendes:

[mm] \bruch{\partial f(x,y,z)}{\partial x}=\bruch{2x^2-2y^2+2z^2-2}{(x^2+y^2+z^2+1)^2} [/mm]

hab es mit der Quotientenregel gelöst. Das Ergebnis mit dem von Wolfram-Alpha weicht ein wenig ab und ich weiß nicht wieso... Kann das mal einer nachrechnen und prüfen?

Danke

        
Bezug
Quotientenregel verwenden: Vorzeichen
Status: (Antwort) fertig Status 
Datum: 23:51 Fr 11.06.2010
Autor: Loddar

Hallo egal!


Warum postest Du nicht auch noch das andere Ergebnis? Jedenfalls erhalte ich im Zähler $... \ [mm] \red{-} [/mm] \ [mm] 2z^2 [/mm] \ ...$

Gruß
Loddar


Bezug
                
Bezug
Quotientenregel verwenden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:02 Sa 12.06.2010
Autor: egal

mist! das war es, danke loddar für die antwort in der späten stunde ;-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]