matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeQuotientenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Quotientenraum
Quotientenraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenraum: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 20:32 Mo 24.11.2008
Autor: Studentin87

Aufgabe
Es sei V ein Vektorraum, W [mm] \subset [/mm] V ein Untervektorraum und V/W der Quotientenraum.
a) Man beweise oder widerlege: Sind [mm] [v_{1}],...,[v_{n}] \in [/mm] V/W linear unabhängig, so sind auch [mm] v_{1},...,v_{n} \in [/mm] V linear unabhängig.
b)Man beweise oder widerlege: Sind [mm] v_{1},...,v_{n} \in [/mm] V linear unabhängig, so sind auch [mm] [v_{1}],...,[v_{n}] \in [/mm] V/W linear unabhängig.

zu a): Da bin ich bis zu folgendem Schritt gekommen:
[mm] \lambda_{1}v_{1}+W+...+\lambda_{n}v_{n}+W=0 [/mm]
Aber wie komme ich von da aus weiter?
zu b): Ich weiß zwar,dass es nicht gilt,aber es wäre nett,wenn mir bei diesem Beweis jemand einen Tipp geben könnte!
Danke schonmal im Vorraus!

        
Bezug
Quotientenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Di 25.11.2008
Autor: angela.h.b.


> Es sei V ein Vektorraum, W [mm]\subset[/mm] V ein Untervektorraum
> und V/W der Quotientenraum.
>  a) Man beweise oder widerlege: Sind [mm][v_{1}],...,[v_{n}] \in[/mm]
> V/W linear unabhängig, so sind auch [mm]v_{1},...,v_{n} \in[/mm] V
> linear unabhängig.
>  b)Man beweise oder widerlege: Sind [mm]v_{1},...,v_{n} \in[/mm] V
> linear unabhängig, so sind auch [mm][v_{1}],...,[v_{n}] \in[/mm] V/W
> linear unabhängig.
>  zu a): Da bin ich bis zu folgendem Schritt gekommen:
>  [mm]\lambda_{1}v_{1}+W+...+\lambda_{n}v_{n}+W=0[/mm]

Hallo,

was meinst Du mit der Null auf der rechten Seite? Dies ist ein Punkt, über welchen Du unbedingt nachdenken mußt.
Mach Dir klar, in welchem Raum Du Dich gerade bewegst und besinne Dich darauf, was dort das neutrale Element ist.

Für den beweis würde ich lieber die Kontarpos. zeigen, also

[mm] v_i, [/mm] i=1,...,n, abhängig ==> [mm] [v_i] [/mm] , i=1,...,n, abhängig

Du mußt hierfür die im Quotientenraum definierten verknüpfungen verwenden.

>  Aber wie komme ich von da aus weiter?
>  zu b): Ich weiß zwar,dass es nicht gilt,

Wie hast Du das herausgefunden? Was hast Du Dir dazu überlegt?

Nimm einen UVR W, der mindestens die Dimension 1 hat und zeige, daß für [mm] 0\not=w\in [/mm] W  
[w] der Nullvektor ist. Der ist dann linear abhängig, denn 5*[0]=[0].

Der casus knacktus bei dieser Richtung:  für sämtliche w [mm] \in [/mm] W ist [w]=W, und das macht die Behauptung kaputt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]