matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenQuotientenkriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Quotientenkriterium
Quotientenkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Di 24.07.2007
Autor: phil-abi05

Aufgabe
Siehe Beschreibung

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

und zwar habe ich eine Frage zum Quotientenkriterium  im Hinblick auf die Konvergenz. Das Beispiel lautet:

a = [mm] \bruch{k+1}{2^{k}} [/mm]

Bei dem QK muss man ja [mm] \bruch{a_{k+1}}{a_{k}} [/mm] berechnen. Meine Frage ist jetzt, wie komme ich oben vom Beispiel auf:

[mm] \bruch{(k+2)*2^{k}}{2^{k+1}*(k+1)} [/mm]

Ich denke, dass ist wahrscheinlich einfache Bruchrechnung. Komme aber einfach nicht dahinter.

        
Bezug
Quotientenkriterium: Umformung
Status: (Antwort) fertig Status 
Datum: 11:37 Di 24.07.2007
Autor: Roadrunner

Hallo Phil!


Schreibe Deinen Ausdruck in zwei Brüche:

[mm] $\bruch{(k+2)*2^{k}}{2^{k+1}*(k+1)} [/mm] \ = \ [mm] \bruch{k+2}{k+1}*\bruch{2^k}{2^{k+1}} [/mm] \ = \ ...$


Gegen welchen Wert strebt der 1. Bruch? Und beim 2. Bruch kannst Du noch gemäß MBPotenzgesetz umformen und kürzen; denn es gilt ja: [mm] $2^{k+1} [/mm] \ = \ [mm] 2^k*2^1 [/mm] \ = \ [mm] 2*2^k$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
Quotientenkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Di 24.07.2007
Autor: phil-abi05

Hallo,

das ist mir schon klar. Mir geht es mehr darum, wie ich überhaupt erst dahin komme, also vom gegebenen Bruch zum umgestellten Bruch im QK. Ich dank dir schon mal.

Bezug
                        
Bezug
Quotientenkriterium: Bruchrechnung
Status: (Antwort) fertig Status 
Datum: 11:52 Di 24.07.2007
Autor: Roadrunner

Hallo Phil!


Schreiben wir uns den Ausdruck [mm] $\bruch{a_{k+1}}{a_k}$ [/mm] mal auf. Anschließend benutzen wir die alte Bruchrechenweisheit "Man dividiert durch einen Bruch indem man mit dem Kehrwert multipliziert" verwenden:

[mm] $\bruch{a_{k+1}}{a_k} [/mm] \ = \ [mm] \bruch{\bruch{k+1+1}{2^{k+1}}}{\bruch{k+1}{2^k}} [/mm] \ = \ [mm] \bruch{\bruch{k+2}{2^{k+1}}}{\bruch{k+1}{2^k}} [/mm] \ = \ [mm] \bruch{k+2}{2^{k+1}}*\bruch{2^k}{k+1} [/mm] \ = \ ...$


Gruß vom
Roadrunner


Bezug
                                
Bezug
Quotientenkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:58 Di 24.07.2007
Autor: phil-abi05

Ok, dank dir. Da stand ich eben aber lange aufm Schlauch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]