matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieQuotientenkörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Quotientenkörper
Quotientenkörper < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenkörper: Umformung
Status: (Frage) beantwortet Status 
Datum: 14:55 So 11.10.2009
Autor: kleine_ente_nora

In meinem Skript steht: [mm] \IQ [/mm] ( [mm] \wurzel{n} [/mm] ) = { a+b [mm] \wurzel{n} [/mm] | a,b [mm] \in \IQ [/mm] } ist Quotientenkörper von [mm] \IZ [/mm] [ [mm] \wurzel{n} [/mm] ]. Aber ist nicht an sich [mm] \IZ [/mm] ( [mm] \wurzel{n} [/mm] ) der Quotientenkörper von [mm] \IZ [/mm] [ [mm] \wurzel{n} [/mm] ]. Die Elemente in [mm] \IZ [/mm] ( [mm] \wurzel{n} [/mm] ) haben die Form [mm] \bruch{a+b\wurzel{n}}{c+d\wurzel{n}}, [/mm] a,b,c,d [mm] \in \IZ [/mm] und die Elemente in [mm] \IQ [/mm] ( [mm] \wurzel{n} [/mm] ) haben die Form [mm] \bruch{a}{b}+\bruch{c}{d}\wurzel{n}, [/mm] a,b,c,d [mm] \in \IZ. [/mm] Kann man das irgendwie ineinander überführen und so zeigen, dass sie beide Quotientenkröper sind?

        
Bezug
Quotientenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 So 11.10.2009
Autor: felixf

Hallo Nora!

> In meinem Skript steht: [mm]\IQ[/mm] ( [mm]\wurzel{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

) = { a+b

> [mm]\wurzel{n}[/mm] | a,b [mm]\in \IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} ist Quotientenkörper von [mm]\IZ[/mm] [

> [mm]\wurzel{n}[/mm] ].

Ja.

> Aber ist nicht an sich [mm]\IZ[/mm] ( [mm]\wurzel{n}[/mm] ) der

Was soll das sein? Das ist nicht definiert, da [mm] $\IZ$ [/mm] kein Koerper ist.

> Quotientenkörper von [mm]\IZ[/mm] [ [mm]\wurzel{n}[/mm] ]. Die Elemente in
> [mm]\IZ[/mm] ( [mm]\wurzel{n}[/mm] ) haben die Form
> [mm]\bruch{a+b\wurzel{n}}{c+d\wurzel{n}},[/mm] a,b,c,d [mm]\in \IZ[/mm] und
> die Elemente in [mm]\IQ[/mm] ( [mm]\wurzel{n}[/mm] ) haben die Form
> [mm]\bruch{a}{b}+\bruch{c}{d}\wurzel{n},[/mm] a,b,c,d [mm]\in \IZ.[/mm] Kann
> man das irgendwie ineinander überführen und so zeigen,
> dass sie beide Quotientenkröper sind?

Nun, erweiter doch mal [mm] $\frac{a + b \sqrt{n}}{c + d \sqrt{n}}$ [/mm] mit $c - d [mm] \sqrt{n}$. [/mm]

LG Felix


Bezug
                
Bezug
Quotientenkörper: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:22 So 11.10.2009
Autor: kleine_ente_nora

Da kommt doch dann irgendwelches Durcheinander raus:
[mm] \bruch{a+b\wurzel{n}}{c+d\wurzel{n}}*\bruch{c-d\wurzel{n}}{c-d\wurzel{n}}=\bruch{ac-ad\wurzel{n}+cb\wurzel{n}-nbd}{c^{2}-nd^{2}}. [/mm]
Meintest du das so? Das brngt mir doch aber gar nichts, oder?

Bezug
                        
Bezug
Quotientenkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 So 11.10.2009
Autor: felixf

Hallo!

> Da kommt doch dann irgendwelches Durcheinander raus:
>  
> [mm]\bruch{a+b\wurzel{n}}{c+d\wurzel{n}}*\bruch{c-d\wurzel{n}}{c-d\wurzel{n}}=\bruch{ac-ad\wurzel{n}+cb\wurzel{n}-nbd}{c^{2}-nd^{2}}.[/mm]
>  Meintest du das so? Das brngt mir doch aber gar nichts,
> oder?

Na, fassen wir das doch mal zusammen. Unten steht [mm] $c^2 [/mm] - n [mm] d^2$; [/mm] dies ist nicht 0 (warum?) und eine ganze Zahl, sagen wir $z$.

Oben steht $(a c - n d b) + (c b - a d) [mm] \sqrt{n}$. [/mm] Das ist von der Form $x + y [mm] \sqrt{n}$ [/mm] mit $x, y [mm] \in \IZ$. [/mm]

Insgesamt hast du also [mm] $\frac{x}{z} [/mm] + [mm] \frac{y}{z} \sqrt{n} \in \IQ[\sqrt{n}]$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]