matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationQuotient zweier Ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Quotient zweier Ableitungen
Quotient zweier Ableitungen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotient zweier Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Do 19.07.2007
Autor: Hing

Aufgabe
Bestimmen Sie den Anstieg der Kurve für t= π / 2: x(t)=4cos(3t)+3cos(t);
y(t)=2sin(2t)+3sin(t) ; 0 ≤ t ≤ 2 π   .

hi, die aufgabe erschien mir sehr einfach. aber die lösung ist mir leider rätselhaft!

sie lautet:

[Dateianhang nicht öffentlich]

wieso wird von den beiden ableitungen ein quotient gebildet? aus der aufgabe lese ich das nicht heraus. was mache ich denn falsch?

Dateianhänge:
Anhang Nr. 1 (Typ: tiff) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Quotient zweier Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Do 19.07.2007
Autor: Somebody


> Bestimmen Sie den Anstieg der Kurve für t= π / 2:
> x(t)=4cos(3t)+3cos(t);
>  y(t)=2sin(2t)+3sin(t) ; 0 ≤ t ≤ 2 π   .
>  hi, die aufgabe erschien mir sehr einfach. aber die lösung
> ist mir leider rätselhaft!
>  
> sie lautet:
>  
> [Dateianhang nicht öffentlich]
>  
> wieso wird von den beiden ableitungen ein quotient
> gebildet?

Du bist doch sicher damit einverstanden, dass der Vektor [mm] $\vektor{\dot{x}(t_0)\\\dot{y}(t_0)}$ [/mm] Richtungsvektor der Tangente an die Kurve [mm] $\gamma:\; t\mapsto \vektor{x(t)\\y(t)}$ [/mm] im Punkt [mm] $\vektor{x(t_0)\\y(t_0)}$ [/mm] ist. - Oder? - Die Steigung dieser Tangente (ihr "Anstieg") ist einfach der Tangens des Steigungswinkels dieses (tangentialen) Vektors, also das Verhältnis seiner $y$-Koordinate [mm] $\dot{y}$ [/mm] zu seiner $x$-Koordinate [mm] $\dot{x}$. [/mm]

> Aus der aufgabe lese ich das nicht heraus. was
> mache ich denn falsch?

Du bist vielleicht zur Zeit einfach eine Spur zu sehr auf Analysis eingestellt - statt auf elementare Vektoralgebra und / oder Trigonometrie...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]