matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikQuadraturspektrum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Quadraturspektrum
Quadraturspektrum < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadraturspektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mo 11.10.2004
Autor: markusphk

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich wusste nicht, wo das hingehört, deswegen poste ich das mal hierhin.

Ich möchte wissen, was man mit dem Quadraturspektrum misst.
Ich weiss, dass das der Imaginärteil des Kreuzspektrums ist. Und es misst wohl scheinbar etwas das "a quarter of a cycle out of phase " ist. Was bedeutet das?

Grüsse
M.

        
Bezug
Quadraturspektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Di 12.10.2004
Autor: Stefan

Lieber Markus!

Nehmen wir mal an, wir haben zwei Stichprobenreihen [mm] $y_1,\ldots,y_T$ [/mm] und [mm] $x_1,\ldots,x_T$ [/mm] zweier Zufallsvariablen.

Diese stellen wir spektral dar:

[mm] $y_t [/mm] = [mm] \bar{y} [/mm] + [mm] \sum\limits_{j=1}^{\frac{T-1}{2}} \left\{\hat{\alpha_j} \cdot \cos\left[ \frac{2\pi j}{T}(t-1) \right] + \hat{\delta_j} \cdot \sin \left[ \frac{2\pi j}{T}(t-1) \right] \right\}$, [/mm]

[mm] $x_t [/mm] = [mm] \bar{x} [/mm] + [mm] \sum\limits_{j=1}^{\frac{T-1}{2}} \left\{\hat{a_j} \cdot \cos\left[ \frac{2\pi j}{T}(t-1) \right] + \hat{a_j} \cdot \sin \left[ \frac{2\pi j}{T}(t-1) \right] \right\}$, [/mm]

mit

[mm] $\hat{\alpha_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T y_t \cdot \cos \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$, [/mm]

[mm] $\hat{\delta_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T y_t \cdot \sin \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$, [/mm]

[mm] $\hat{a_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T x_t \cdot \cos \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$, [/mm]

[mm] $\hat{d_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T x_t \cdot \sin \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$. [/mm]

Dann ist das Quadratspektrum gegeben durch

(*) [mm] $\hat{q}_{xy}\left(\frac{2\pi j}{T}\right) [/mm] = [mm] \frac{T}{8 \pi} \cdot \left( \hat{d_j} \hat{\alpha_j} - \hat{a_j} \hat{\delta_j} \right)$. [/mm]

(Dies ist gerade der Imaginärteil des "Kreuzspektrums" (so wie du es genannt hast).)

Macht man nun die genannte Verschiebung "a quarter of a cycle out of phase", die du angesprochen hast, d.h. geht man zu den Ausdrücken

[mm] $x_t^{\*} [/mm] =  [mm] \bar{x} [/mm] + [mm] \sum\limits_{j=1}^{\frac{T-1}{2}} \left\{\hat{a_j} \cdot \cos\left[ \frac{2\pi j}{T}(t-1) + \frac{\pi}{2} \right] + \hat{a_j} \cdot \sin \left[ \frac{2\pi j}{T}(t-1) + \frac{\pi}{2}\right] \right\}$ [/mm]

über, dann kann man zeigen, dass die (Stichproben-)Kovarianz von [mm] $y_t$ [/mm] und [mm] $x_t^{\*}$ [/mm] gerade durch

(**) [mm] $\frac{1}{2} \sum\limits_{j=1}^{\frac{T-1}{2}} \cdot \left( \hat{d_j} \hat{\alpha_j} - \hat{a_j} \hat{\delta_j} \right)$ [/mm]

gegeben ist.

Jetzt vergleiche mal (*) und (**), dann weißt du, was gemeint war. ;-)

Liebe Grüße
Stefan




Bezug
                
Bezug
Quadraturspektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:23 Di 12.10.2004
Autor: markusphk

Ich habe jetzt hier zwei Zeitreihen X(t) , Y(t).

Heisst das jetzt dass das Cospektrum Informationen über die Elemente der ZR liefert die "in Phase" (heisst das so?) sind und das Quadraturspektrum über die Elemente die um [mm] \pi/2 [/mm] verschoben sind?

Bezug
                        
Bezug
Quadraturspektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Di 12.10.2004
Autor: Stefan

Hallo Markus!

> Ich habe jetzt hier zwei Zeitreihen X(t) , Y(t).
>
> Heisst das jetzt dass das Cospektrum Informationen über die
> Elemente der ZR liefert die "in Phase" (heisst das so?)
> sind und das Quadraturspektrum über die Elemente die um
> [mm]\pi/2[/mm] verschoben sind?

Das kann man so sagen, ja, wobei ja nur $x$ verschoben ist, $y$ nicht.

Denn: Das Cospektrum ist gegeben durch

[mm] $\hat{c}_{xy}\left(\frac{2\pi j}{T} \right) [/mm] = [mm] \frac{T}{8 \pi} (\hat{a_j} \hat{\alpha_j} [/mm] + [mm] \hat{d_j}\hat{\delta_j})$, [/mm]

und die (Stichproben-)Kovarianz von [mm] $x_t$ [/mm] und [mm] $y_t$ [/mm] ist gegeben durch

[mm] $\frac{1}{2} \sum\limits_{j=1}^{\frac{T-1}{2}} (\hat{a_j} \hat{\alpha_j} [/mm] + [mm] \hat{d_j}\hat{\delta_j})$. [/mm]

Man sieht also ganz deutlich die Parallele zu den Formeln meines letzten Beitrages.

Aber ich habe nicht viel Ahnung davon und bin nur reiner Amateur. Vielleicht sagt ja noch mal ein echter Statistiker was dazu. ;-)

Mich interessiert nur die Analysis dahinter. :-)

Liebe Grüße
Stefan
  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]