matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikQuadraturformeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Numerik" - Quadraturformeln
Quadraturformeln < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadraturformeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 So 11.10.2009
Autor: csak1162

Aufgabe
Berechnen Sie [mm] \integral_{0}^{3}{cosx*e^{sinx} dx} [/mm]

mit der Trapez- sowie der Simpsonregel. Für Welches N beträgt die erreichte Genauigkeit 8 Stellen?

mit der Trapezregel erhalte ich [mm] \integral_{0}^{1}{3cos(0+3t)*e^{sin(0+3t)} dt} [/mm]

und dann 3*(1/2 (g(0) + g(1))) = -0,210057851

mit der Simpsonregel erhalte ich

3 * (1/6 (g(0) +4g(1/2) + g(1))) = 0,3135...

jeweils mit g(t) =  [mm] cos(0+3t)*e^{sin(0+3t)} [/mm]



stimmt das so?????


und was ist dieses N? wie rechne ich das aus??



danke lg


        
Bezug
Quadraturformeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 So 11.10.2009
Autor: csak1162

oder ist das ganz falsch???

danke lg

Bezug
        
Bezug
Quadraturformeln: Antwort
Status: (Antwort) fertig Status 
Datum: 15:57 So 11.10.2009
Autor: Al-Chwarizmi


> Berechnen Sie [mm]\integral_{0}^{3}{cosx*e^{sin\,x} dx}[/mm]
>  
> mit der Trapez- sowie der Simpsonregel. Für Welches N
> beträgt die erreichte Genauigkeit 8 Stellen?
>  mit der Trapezregel erhalte ich
> [mm]\integral_{0}^{1}{3cos(0+3t)*e^{sin(0+3t)} dt}[/mm]
>  
> und dann 3*(1/2 (g(0) + g(1))) = -0,210057851
>  
> mit der Simpsonregel erhalte ich
>
> 3 * (1/6 (g(0) +4g(1/2) + g(1))) = 0,3135...
>  
> jeweils mit g(t) =  [mm]cos(0+3t)*e^{sin(0+3t)}[/mm]
>  
> stimmt das so?????

Das ist kaum das, was in der Aufgabe gemeint war.

> und was ist dieses N? wie rechne ich das aus??


Hallo csak,

dies ist eine Aufgabe aus der numerischen Mathematik,
zu deren Lösung wohl der Computer eingesetzt werden
soll.
Zwar kann man das Integral durch die Substitution
[mm] u:=e^{sin\,x} [/mm] auch leicht exakt lösen. Das soll man wohl
auch tun, um die numerischen Lösungen dann mit diesem
exakten Wert vergleichen zu können.

N ist bestimmt die Anzahl der gleich breiten Teilintervalle,
in welche man das Integrationsintervall  [mm] [0\,....\,3] [/mm] für die
Trapez- und die Simpsonnäherung einteilen soll.
Stelle also zuerst Formeln auf für die benötigten Stütz-
stellen [mm] x_0, x_1,\,.....\,, x_k,\,.....\,x_N [/mm] und für die
dortigen Funktionswerte  [mm] y_0, y_1,\,.....\,, y_k,\,.....\,y_N [/mm]  auf
und benütze dann die Summenformeln für Trapez-
und Simpsonregel, um alles in ein kleines Programm
oder in (z.B.) MatLab-Formeln zu verpacken.


LG     Al-Chw.





Bezug
                
Bezug
Quadraturformeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 So 11.10.2009
Autor: csak1162

okay dann werde ich diese Aufgabe besser lassen,

hab noch nie was von Summenformeln für Trapezformel, Simpsonregel gehört!

was ist die Summenformel, vielleicht ist es irgendetwas was ich weiß aber nicht weiß dass es Summenformel heißt!!

danke lg

Bezug
                        
Bezug
Quadraturformeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 So 11.10.2009
Autor: Al-Chwarizmi


> okay dann werde ich diese Aufgabe besser lassen,
>  
> hab noch nie was von Summenformeln für Trapezformel,
> Simpsonregel gehört!
>  
> was ist die Summenformel, vielleicht ist es irgendetwas was
> ich weiß aber nicht weiß dass es Summenformel heißt!!

Es sind die Formeln, die man erhält, wenn man die Quadra-
turformeln auf mehrere (N) nebeneinanderliegende gleich
breite Teilintervalle des gesamten Integrationsintervalls
anwendet und dann die Ergebnisse addiert.
Schau dazu mal unter folgenden Links nach:

        []Summierte Trapezformel

        []Summierte Simpson-Formel


LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]