Quadratische Lösungsformel < Sonstiges < Schule < Mathe < Vorhilfe
|
Hallo zusammen !
Mal wieder mal ne Frage von mir, ich hoffe ihr könnt mir auch hier weiterhelfen !
Es geht um die Quadratische Lösungsformel der Gleichung ax²+bx+c=0: [mm] x_{1,2} [/mm] = [mm] \bruch{-b\pm\wurzel{b²-4ac}}{2a} [/mm] ...
Woher kommt diese Formel ? Also ich meine jetzt keine Herleitung (kann ma ja mit quadr. Erg.) , sondern von wem stammt die Formel, sozusagen: wer hats erfunden ?
Brauche da geschichtliche Grundlagen / Fakten zu dieser Formel, Wikipedia bringt mich da nicht weiter ...
Vielelicht hat einer von euch irgendwas genaueres, nen Inetlink ?
Vielen Dank schon mal jetzt
LG
|
|
|
|
> Es geht um die Quadratische Lösungsformel der Gleichung
> ax²+bx+c=0: [mm]x_{1,2}[/mm] = [mm]\bruch{-b\pm\wurzel{b²-4ac}}{2a}[/mm]
> ...
> Woher kommt diese Formel ? Also ich meine jetzt keine
> Herleitung (kann ma ja mit quadr. Erg.) , sondern von wem
> stammt die Formel, sozusagen: wer hats erfunden ?
* Der Inder Brahmagupta im 7. Jahrhundert entwickelt die Mitternachtsformel für die Gleichung [mm] ax^2+bx=c, [/mm] a>0. Schon vorher gab es Lösungswege für verschiedene Formen von quadrat. Gleichungen.
* Der Araber Al-Chwarizmi (um 800) (er wäre sicher stolz auf seinen modernen Nachfolger im Matheraum ) arbeitet mit 6 verschiedenen Formen von quadratischen Gleichungen, aber nur mit positiven a,b,c und löste sie geometrisch.
* In Europa: Michael Stifel (um 1520) entwickelte die Formel für [mm]x^2=\pm px \pm q[/mm], also fast die heutige p-q-Formel, die dann von Simon Stevin (um 1580) zur heutigen p-q-Formel führte.
Suchen mit diesen Namen könnte erfolgreich sein.
Buchhinweis: P.Mäder, Mathematik hat Geschichte, Metzler-Verlag (Hinweise aus diesem Buch)
Gruß, MatheOldie
Zusatz:
1) Die damaligen Schreibweisen und der Umgang mit Variablen unterschieden sich erheblich vom heutigen Stand, man darf also nicht erwarten, dass man die Formel so einfach bei einem der Mathematiker findet.
2) Das genannte Buch ist sehr empfehlenswert und gehört m.E. in jede Schulbibliothek.
|
|
|
|