matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisQuadratische Funktion mit Matr
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Quadratische Funktion mit Matr
Quadratische Funktion mit Matr < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Funktion mit Matr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Sa 25.02.2012
Autor: ecko

Hallo, ich hab ein kleines Verständniss Problem mit bei der Umwandlung von Quadratischen Funktionen in Matrixschreibweise.

Am besten ich zeig das mal an einem Beispiel.

[mm] f(x_{1},x_{2}) [/mm] = [mm] 2x_{1}^2 [/mm] + [mm] x_{2} [/mm] - [mm] 4x_{1} [/mm] - [mm] 2x_{2} [/mm] + 3

hat die Form [mm] \bruch{1}{2}x^THx [/mm] + [mm] b^{T}x [/mm] + c

also: [mm] \bruch{1}{2}(x_1 x_2)\pmat{ H_{1} & H_{2} \\ H_{2} & H_{1} }\vektor{x_{1} \\ x_{2}} [/mm] + (-4 [mm] -2)\vektor{x_{1} \\ x_{2}} [/mm] + 3

Wie komm ich nun auf die die Werte [mm] H_{1}, H_{2}? [/mm] Die Matrix H ist übrigens symmetrisch.

Danke für jede Hilfe



        
Bezug
Quadratische Funktion mit Matr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 Sa 25.02.2012
Autor: scherzkrapferl

Hallo,

Eventuell hilft dir:

http://de.wikipedia.org/wiki/Quadrik#Beispiele

für allgemeine Beispiele mal zum Verständis.

LG Scherzkrapferl

Bezug
        
Bezug
Quadratische Funktion mit Matr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 Sa 25.02.2012
Autor: ecko

Ich hab das ausversehen doppelt eingestellt, da ich die Funktion falsch hingeschrieben habe, das 2. Glied soll [mm] x_{2}^2 [/mm] sein nicht [mm] x_{2} [/mm]

Bezug
        
Bezug
Quadratische Funktion mit Matr: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Sa 25.02.2012
Autor: angela.h.b.


> Hallo, ich hab ein kleines Verständniss Problem mit bei
> der Umwandlung von Quadratischen Funktionen in
> Matrixschreibweise.
>  
> Am besten ich zeig das mal an einem Beispiel.
>  [mm]\bruch{1}{2}(x_1 x_2)\pmat{ H_{1} & H_{2} \\ H_{2} & H_{1} }\vektor{x_{1} \\ x_{2}}[/mm]
> [mm]f(x_{1},x_{2})[/mm] = [mm]2x_{1}^2[/mm] + [mm]x^{\red}_{2}[/mm] - [mm]4x_{1}[/mm] - [mm]2x_{2}[/mm] + 3
>  
> hat die Form [mm]\bruch{1}{2}x^THx[/mm] + [mm]b^{T}x[/mm] + c
>  
> also: [mm]\bruch{1}{2}(x_1 x_2)\pmat{ H_{1} & H_{2} \\ H_{2} & H_{1} }\vektor{x_{1} \\ x_{2}}[/mm]
> + (-4 [mm]-2)\vektor{x_{1} \\ x_{2}}[/mm] + 3
>  
> Wie komm ich nun auf die die Werte [mm]H_{1}, H_{2}?[/mm] Die Matrix
> H ist übrigens symmetrisch.

Hallo,

ich habe oben mal in rot das Quadrat eingefügt, welches Du vermutlich beim Tippen vergessen hast.

die Frage kannst Du Dir eigentlich selbst beantworten:

es muß doch sein  [mm]\bruch{1}{2}(x_1 x_2)\pmat{ H_{1} & H_{2} \\ H_{2} & H_{1} }\vektor{x_{1} \\ x_{2}}[/mm] [mm] =2x_1^2+x_2^2 [/mm]

<==> [mm] \bruch{1}{2}(H_1x_1^2 [/mm] + [mm] H_1x_2^2+2H_2x_1x_2)=2x_1^2+x_2^2=2x_1^2+x_2^2+0*x_1x_2. [/mm]

Koeffizientenvergleich (gucken, was vor [mm] x_1^2, x_2^2 [/mm]  und [mm] x_1x_2 [/mm] steht) liefert

[mm] H_1=4 [/mm] und [mm] H_1=2 [/mm] und [mm] H_2=0. [/mm] Das kann nicht klappen...

Ich denke aber, Du suchst eher eine Matrix [mm] \pmat{h_1&h_2\\h_2&h_3}. [/mm]
Könnte das sein?
Wie Du sie finden kannst, weißt Du nun.

LG Angela







Bezug
                
Bezug
Quadratische Funktion mit Matr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Sa 25.02.2012
Autor: ecko

Danke, ja das mit [mm] H_{3} [/mm] hab ich wohl etwas verwechselt durch die symmetrie, aber ist ja klar das nur die [mm] H_{2} [/mm] gleich sein müssen, die Diagonaleinträge sind ja egal, also vielen dank für diesen Hinweis!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]