matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieQuadermaß und Abschluss
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Quadermaß und Abschluss
Quadermaß und Abschluss < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadermaß und Abschluss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:14 Do 21.11.2013
Autor: Gnocchi

Aufgabe
a.) Man beweise oder widerlege: Für M [mm] \subset \IR^{d} [/mm] messbar gilt [mm] \mu(\overline{M})=\mu(M) [/mm]
b.) Sei A [mm] \subset \IR^{d} [/mm] eine diskrete Menge, d.h. A habe keinen Häufungspunkt und sei m: A [mm] \to [0,\infty) [/mm] eine Funktion.
Man zeige [mm] \mu(Q):=\summe_{p\in A \cap Q}^{} [/mm] m(p) definiert ein Quadermaß

Zu a.) Meiner Meinung nach stimmt die Aussage, da der Abschluss ja die Menge M geschnitten mit den Nullmengen beinhaltet. Da das Maß der Nullmengen 0 ist müsste ja das Maß des Abschlusses dem Maß von M entsprechen?
b.)Also zu zeigen ist.
i.) monoton: [mm] \mu(Q) \le \mu(Q') [/mm] für Q [mm] \subset [/mm] Q'
ii.) additiv: Falls für Q [mm] \cap [/mm] Q' = [mm] \emptyset [/mm] mit [mm] Q\cupQ' \in Q_d [/mm] gilt [mm] \mu(Q\cupQ')=\mu(Q)+\mu(Q') [/mm]
iii.)regulär: [mm] \gdw \forall \varepsilon [/mm] > 0 [mm] \forall [/mm] Q [mm] \in Q_d \exists [/mm] Q' [mm] \in Q_d, [/mm] Q' offen, [mm] Q\subset [/mm] Q' und [mm] \mu(Q') \le \mu(Q)+ \varepsilon [/mm]

zu i)
[mm] \mu(Q')=\summe_{p\in A \cap Q'}^{} m(p)=\summe_{p\in A \cap (Q'\backslash Q)}^{} m(p)+\summe_{p\in A \cap Q}^{} m(p)=\summe_{p\in A \cap (Q'\backslash Q)}^{} [/mm] m(p)+ [mm] \mu(Q) \le \mu(Q) [/mm] ,  da [mm] \summe_{p\in A \cap (Q'\backslash Q)}^{} [/mm] m(p) [mm] \ge [/mm] 0 gilt.
Stimmt das so?

        
Bezug
Quadermaß und Abschluss: Antwort
Status: (Antwort) fertig Status 
Datum: 06:20 Do 21.11.2013
Autor: fred97


> a.) Man beweise oder widerlege: Für M [mm]\subset \IR^{d}[/mm]
> messbar gilt [mm]\mu(\overline{M})=\mu(M)[/mm]
>  b.) Sei A [mm]\subset \IR^{d}[/mm] eine diskrete Menge, d.h. A habe
> keinen Häufungspunkt und sei m: A [mm]\to [0,\infty)[/mm] eine
> Funktion.
>  Man zeige [mm]\mu(Q):=\summe_{p\in A \cap Q}^{}[/mm] m(p) definiert
> ein Quadermaß
>  Zu a.) Meiner Meinung nach stimmt die Aussage, da der
> Abschluss ja die Menge M geschnitten mit den Nullmengen
> beinhaltet. Da das Maß der Nullmengen 0 ist müsste ja das
> Maß des Abschlusses dem Maß von M entsprechen?



Die Aussage ist falsch ! Nimm mal d=1 und [mm] M=\IQ. [/mm]


>  b.)Also zu zeigen ist.
>  i.) monoton: [mm]\mu(Q) \le \mu(Q')[/mm] für Q [mm]\subset[/mm] Q'
>  ii.) additiv: Falls für Q [mm]\cap[/mm] Q' = [mm]\emptyset[/mm] mit [mm]Q\cupQ' \in Q_d[/mm]
> gilt [mm]\mu(Q\cupQ')=\mu(Q)+\mu(Q')[/mm]
>  iii.)regulär: [mm]\gdw \forall \varepsilon[/mm] > 0 [mm]\forall[/mm] Q [mm]\in Q_d \exists[/mm]

> Q' [mm]\in Q_d,[/mm] Q' offen, [mm]Q\subset[/mm] Q' und [mm]\mu(Q') \le \mu(Q)+ \varepsilon[/mm]
>  
> zu i)
>  [mm]\mu(Q')=\summe_{p\in A \cap Q'}^{} m(p)=\summe_{p\in A \cap (Q'\backslash Q)}^{} m(p)+\summe_{p\in A \cap Q}^{} m(p)=\summe_{p\in A \cap (Q'\backslash Q)}^{}[/mm]
> m(p)+ [mm]\mu(Q) \le \mu(Q)[/mm]


Da sollte am Ende [mm] \ge [/mm] stehen.

FRED

> ,  da [mm]\summe_{p\in A \cap (Q'\backslash Q)}^{}[/mm]
> m(p) [mm]\ge[/mm] 0 gilt.
>  Stimmt das so?


Bezug
                
Bezug
Quadermaß und Abschluss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:10 Do 21.11.2013
Autor: Gnocchi

> Die Aussage ist falsch ! Nimm mal d=1 und [mm]M=\IQ.[/mm]
>  

Ales klar
Dann erhalte ich doch:
[mm] \mu(\overline{\IQ})=\mu(\IR) \not= \mu(\IQ) [/mm]

> Da sollte am Ende [mm]\ge[/mm] stehen.

Sorry, mein Fehler.

Bezug
                        
Bezug
Quadermaß und Abschluss: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Do 21.11.2013
Autor: schachuzipus

Hallo Gnocchi,


> > Die Aussage ist falsch ! Nimm mal d=1 und [mm]M=\IQ.[/mm]
> >
> Ales klar
> Dann erhalte ich doch:
> [mm]\mu(\overline{\IQ})=\mu(\IR) \not= \mu(\IQ)[/mm]

>

Genau! Vllt. schreibst du noch hin, was [mm]\mu(\IQ)[/mm] und was [mm]\mu(\IR)[/mm] ist und dass [mm]\mu[/mm] das Lebesguemaß sein soll ...

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]