matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisQuad.Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Quad.Gleichung
Quad.Gleichung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quad.Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Mo 27.11.2006
Autor: useratmathe

Aufgabe
Lösen sie die gleichung  z² + iz - 1 - i = 0 mit hilfe der üblichen lösungsformel für quadratische gleichungen!

Hallo,

also es würde ja heißen:

[mm] z_{1/2}=-\bruch{i}{2} \pm \wurzel{\bruch{i^2}{4}+1+i} [/mm]

Und nun?

        
Bezug
Quad.Gleichung: erstmal soweit
Status: (Antwort) fertig Status 
Datum: 13:54 Mo 27.11.2006
Autor: Herby

Hallo,

> Lösen sie die gleichung  z² + iz - 1 - i = 0 mit hilfe der
> üblichen lösungsformel für quadratische gleichungen!
>  Hallo,
>  
> also es würde ja heißen:
>  
> [mm]z_{1/2}=-\bruch{i}{2} \pm \wurzel{\bruch{i^2}{4}+1+i}[/mm]
>  
> Und nun?

nun ausnutzen, dass [mm] i^2=-1 [/mm] ist ;-)



[mm] z_{1,2}=-\bruch{i}{2}\pm\wurzel{\red{-}\bruch{1}{4}+1+i} [/mm]



[mm] z_{1,2}=-\bruch{i}{2}\pm\wurzel{\bruch{3}{4}+i} [/mm]



Liebe Grüße
Herby

Bezug
        
Bezug
Quad.Gleichung: weiter geht's ...
Status: (Antwort) fertig Status 
Datum: 14:02 Mo 27.11.2006
Autor: Loddar

Hallo useratmathe!


Um nun noch die Wurzel auszurechnen, kannst Du entweder mit der []Moivre-Formel vorgehen.

Alternativ geht auch der Ansatz: [mm] $(a+b*i)^2 [/mm] \ = \ [mm] a^2+2ab*i-b^2 [/mm] \ = \ [mm] \blue{a^2-b^2} [/mm] \ + \ [mm] \red{2ab}*i [/mm] \ = \ [mm] \blue{\bruch{3}{4}} [/mm] \ + \ [mm] \red{1}*i$ [/mm]

[mm] $\Rightarrow$ $a^2-b^2 [/mm] \ = \ [mm] \bruch{3}{4}$ [/mm]   sowie   $2ab \ = \ 1$

Nun dieses Gleichungssystem lösen ...


Gruß
Loddar


Bezug
        
Bezug
Quad.Gleichung: und nach endlich langer Zeit..
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Mo 27.11.2006
Autor: Herby

erhältst du,


[mm] z_1=1 [/mm]

[mm] z_2=-1-i [/mm]


[grins]


lg
Herby

Bezug
                
Bezug
Quad.Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:43 Mo 27.11.2006
Autor: useratmathe

SUPER! Danke für eure schneller Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]