matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemePseudoinverse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Pseudoinverse
Pseudoinverse < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pseudoinverse: Hinweise
Status: (Frage) beantwortet Status 
Datum: 08:38 Mi 16.06.2010
Autor: Hoffmann79

Aufgabe
Die Vektoren [mm] \underline{v}, \underline{w} \in \IR^{n} [/mm] seien zueinander orthogonal [mm] (\underline{v}, \underline{w} \not= \underline{0}). [/mm] Geben Sie die Pseudoinverse der Matrix [mm] \underline{V} \in \IR^{n \times 2} [/mm] (d.h. [mm] \underline{v}, \underline{w} [/mm] stehen in den Spalten von [mm] \underline{V}) [/mm] an.

Hallo allerseits,

quäle mich mal wieder mit Linearer Algebra rum. Weiss mit obiger Aufgabe eigentlich gar nichts anzufangen. Orthogonal bedeutet hier, die Spaltenvektoren stehen senkrecht aufeinander. Irgendwie hängt das wohl mit der Singulärwertzerlegung zusammen.

SWZ:= [mm] \underline{A} [/mm] = [mm] \underline{U}\underline{S}\underline{V}^{T} [/mm]

Pseudoinverse:= [mm] \underline{A}^{+} [/mm] = [mm] \underline{V}\underline{S}^{T}\underline{U}^{T} [/mm]

Tja, keine Ahnung was zu tun ist.

MfG

Daniel

        
Bezug
Pseudoinverse: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Do 17.06.2010
Autor: max3000

Hallo.

Also Singulärwertzerlegung ist ja schonmal richtig.
Mach das doch mal.

Die Singulärwerte sind die Eigenvektoren von [mm] A^T*A [/mm]
Deine 2 Vektoren einsetzen:

[mm] \pmat{v_1 & v_2 \\ w_1 & w_2}*\pmat{v_1 & w_1 \\ v_2 & w_2}= [/mm]
[mm] \pmat{v_1^2+v_2^2 & v_1*w_1+v_2*w_2 \\ w_1v_1+w_2v_2 & w_1^2+w_2^2} [/mm]

Da die Vektoren senkrecht zueinenader stehen, gilt:
[mm] v_1*w_1+v_2*w_2==0 [/mm]

Damit hast du die Singulärwerte [mm] \|v\|_2^2 [/mm] und [mm] \|w\|_2^2. [/mm]
Vielleicht hilft dir das ja erstmal als Anfang. Jetzt musst du noch deine Matrizen U und V berechnen und hast erstmal die Zerlegung. Eigentlich musst du nur die Definitionen anwenden.

Das bekommst du schon irgendwie hin.

Grüße
Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]